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ABSTRACT

The main topic of this dissertation is the recovery operation of distribution networks after

extreme weather events. The study focuses on coordinating crews, equipment, and distribution

network operations. While utilities have established protocols for recovering distribution networks,

areas for continued development still exist, especially with the increase of distributed generators

and controllable switches. After major weather events, one of the greatest challenges that operators

face is managing the large influx of crews required to repair the damage and to reestablish normal

network operations. The aim of this work is to improve current practices and provide assistance

to utilities in their decision-making process to efficiently restore the system. The main objectives

of this research are summarized as follows: 1) develop a stochastic program to prepare human

resources and equipment before extreme weather events; 2) co-optimize repair scheduling and

power operation of distribution networks; and 3) design solution algorithms for solving the above

problems. For an upcoming storm, utilities should have a preparation plan that includes warehousing

restoration supplies, securing staging sites (depots), and prepositioning crews and equipment. Pre-

storm planning enables faster and more efficient post-disaster deployment of crews and equipment

resources to damage locations. To assist utilities in making this important preparation, we develop

a two-stage stochastic mixed integer linear program. The first stage determines the depots, number

of crews in each site, and the amount of equipment. The second stage is the recourse action that

deals with acquiring new equipment and assigning crews to repair damaged components in realized

scenarios. The objective of the developed model is to minimize the costs of depots, crews, equipment,

and penalty costs associated with delays in obtaining equipment and power restoration. We consider

the uncertainties of damaged lines, number and type of equipment required, and expected repair

times.

In the post-disaster phase, two approaches are presented for co-optimizing repair and restoration
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in distribution networks. First, a novel mixed integer linear program model is formulated for

co-optimizing crews, resources, and distribution network operations. In addition, a framework for

integrating different types of photovoltaic (PV) systems in the restoration process is developed. We

consider line crews for damage repairs and tree crews for obstacle removal. The model is solved

using a new algorithm that utilizes the neighborhood search method to iteratively improve the

solution. The algorithm is used in a dynamically changing environment to handle the uncertainty of

the repair time. In the second approach, a two-stage SMIP is developed to model the stochastic

repair and restoration problem. A decomposition approach, combined with the Progressive Hedging

algorithm, is used for solving the stochastic problem.
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CHAPTER 1. INTRODUCTION

1.1 Research Motivations and Problem Statement

The United States has experienced a rising trend in power outages, primarily due to the

combination of an aging electrical grid and a dramatic increase in severe storms. According to a

report published by the Executive Office of the President, around 700 large-scale outage events

occurred due to severe weather events in the United States between 2003 and 2012 [1]. In 2016, the

average outage duration for the customers in the United States ranged from 27 minutes in Nebraska

to 6 hours in West Virginia, to 20 hours in South Carolina due to Hurricane Matthew [2]. More

recently in 2017, nearly 280,000 Texas customers were left without power after Hurricane Harvey [3].

The U.S. Department of Homeland Security announced that about 15 million customers were left

without power after Hurricane Irma [4]. In 2017, 16 major events occurred in the United States that

caused more than $1 billion each in damage. The 16 major events included three tropical cyclones

and eight severe storms [5], as shown in Fig. 1.1. The trend continued in 2018 with 14 major events

including eight severe storms, two tropical cyclones, two winter storms, drought, and wildfires [6],

as shown in Fig. 1.2. The National Oceanic and Atmospheric Administration’s (NOAA) National

Centers for Environmental Information (NCEI) has been tracking weather and climate events that

have greatly impacted the United States [5]. NOAA provided a summary for the number of events

and the associated costs for the years 1980–2017, as shown in Fig. 1.3.

The loss of electricity after a hurricane or any natural disaster can cause significant inconvenience

and is potentially life threatening in some cases. Improving outage management and accelerating

service restoration are critical tasks for utilities. Dispatching and routing repair crews and operating

the network to restore service for customers are crucial responsibilities. The routing problem is a

combinatorial optimization problem, which is known to be difficult. Combining emergent distribution

system operation technologies with the routing problem will further increase the complexity. The
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Figure 1.1 Map depicting the general area where sixteen weather and climate disasters

caused at least one billion dollars in direct damages in 2017 [5].

commonly used approach is to consider the power system operation/restoration and repair crew

routing as two independent problems. However, the operation of the network and the repairs

are interdependent in practice. Some customers cannot be served until the damage is repaired.

Utilities commonly rely on the experiences of the operators, which cannot lead to an optimal

outage management plan. Therefore, an integrated framework to optimally coordinate repair and

restoration needs to be designed. The addition of new technologies, such as distributed generation

and automatic/controllable switches, can help facilitate a faster restoration process if coordinated

well with the repairs. An optimization process that jointly considers crew scheduling and the

operation of the network can help the operator in making critical and more informed decisions

after outages. In addition, in order to ensure a fast response, utilities must prepare their resources

before a severe weather event hits the system. A major challenge that utilities face is lack of

resources, including human resources and equipment, to handle extreme events. Once utilities

request assistance from neighboring companies, they are faced with another task of managing the
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Figure 1.2 Map depicting the general area where fourteen weather and climate disasters

caused at least one billion dollars in direct damages in 2018 [6].

newly acquired resources. For these reasons, preparation is essential before predicted extreme or

severe weather events. Utilities need to identify the required resources and preallocate the crews

and equipment. The aim of our work is to provide utilities with a better decision-making process

for extreme events to improve the resiliency of the system. Resiliency is a relatively new concept in

power systems that has been an active area of study in recent years. Resiliency in power systems can

be defined as the ability of the system to withstand and recover quickly following disruptive events.

Improving resiliency involves long-term planning, short-term planning, and post-event operations.

In [7] and [8], the authors focused on long-term planning through infrastructure hardening, optimal

distributed generator (DG) placement, and automatic switch installations. In this research, we

focus on short-term planning and post-event operations for distribution systems, specifically the

preparation of equipment and crews, and post-event repair and restoration.
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Figure 1.3 The number, type, and annual cost of billion-dollar disasters in the U.S. from

1980 to 2017, based on NCEI data from Adam Smith [5].

1.2 Research Objective

The objectives of the dissertation are listed as follows:

� Develop a two-stage multi-objective stochastic mixed integer linear program (SMIP) to prepare

and pre-stage human resources and equipment. The first stage determines the staging sites,

number of crews in each site, and the amount of equipment. The second stage is the recourse

action that deals with acquiring new equipment and assigning crews to repair the damage. The

objective of the developed model is to minimize the costs of staging areas, crews, equipment,

and penalty costs associated with delays in obtaining equipment and power restoration. We

consider the uncertainties of damaged lines, number and type of equipment required, and

expected repair times. Pre-disaster planning enables quick deployment of crews and equipment

to damage locations.

� Develop a mathematical model to co-optimize repair scheduling and the recovery operation of
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distribution networks. Two approaches are proposed in this dissertation. First, a deterministic

mixed integer linear program (MILP) for coordinating network reconfiguration, damage

isolation, distributed generator redispatch, and crew/resource logistics is developed. Different

types of photovoltaic (PV) systems and battery energy storage systems (BESS) are considered

in the mathematical model. The model includes a formulation that dynamically operates

automatic switches in distribution systems to form microgrids and isolates damaged lines.

The developed model considers two different types of crews, namely, line crews for damage

repair and tree crews for obstacle removal. In the second approach, a two-stage SMIP is

developed to solve the repair and restoration problem. The first stage is to dispatch the repair

crews to the damaged components. The second stage is distribution system restoration using

distributed generators and reconfiguration. We consider demand uncertainty in terms of a

truncated normal forecast error distribution and model the uncertainty of the repair time

using a lognormal distribution.

� Design solution algorithms for solving the above problems. The combined repair and restoration

problem is difficult to solve using commercial solvers. In addition, due to the nature of the

problem, a fast solution is required to dispatch the crews. Here, an algorithm for each approach

mentioned in the previous objective is proposed. For the MILP model, a tri-stage algorithm

is developed to solve the proposed model. The first stage is an assignment problem, where

the crews are assigned to the damaged components, and in the second stage, the crews are

dispatched to the assigned components from the first stage. In the third stage, a neighborhood

search approach is used to improve the routing decisions obtained from the second stage. The

algorithm is employed in a dynamically changing environment, where the routing solution is

updated as new information on the system status is obtained. For the two-stage SMIP, the

problem is decomposed into two stochastic subproblems. The first subproblem is a stochastic

crew assignment problem, where the main objective is to minimize the working hours. The

second subproblem dispatches the crews to the assigned damaged components and operates

the distribution system.
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1.3 Research Contribution

The main contributions of this dissertation are listed as follows:

� A new two-stage SMIP model is developed and used to select depots and allocate crews

and equipment. The model considers different types of crews (line and tree crews) and

equipment (poles, transformers, and conductors). Mathematical equations for modeling the

interdependencies of the depots, crews, equipment, and damaged components are formulated,

in addition to symmetry-breaking constraints to improve the performance of the model. Also,

we provide a procedure for estimating the number and types of required equipment after

extreme weather events.

� A novel mathematical model for combining the repair crew routing and distribution network

operation problems is developed. To the best of our knowledge, the proposed model is the

first formulation that combines the two problems in the literature. The designed model

captures the nature of the repair problem by modeling the coordination of line and tree crews,

resource logistics, and isolation of the damaged components. This model can assist utilities in

scheduling the repairs and reestablish normal network operations after natural disasters.

� A mathematical formulation is developed for fault isolation and service restoration. Most of

the studies on distribution system restoration assume that every line is equipped with switches

to isolate the faults, which is not the case in practice. The developed formulation allows the

network to isolate the faults and divides the network into microgrids. The proposed model can

be incorporated into various distribution system studies, such as those related to distribution

system planning, networked microgrids, and distribution system repair and restoration.

� A new framework for modeling different types of PV systems is developed. Not all PV systems

can be used during an outage. There are three main types of PV systems that we consider in

this dissertation: 1) On-grid (grid-tied) system: this type of PV is disconnected during an

outage; 2) Hybrid on/off-grid (PV with BESS): the PV system operates on-grid in normal

conditions, and off-grid during an outage (serves local load only); 3) PV + BESS with grid
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forming capabilities: this system can restore part of the network that is not damaged if the

fault is isolated. The idea of the proposed approach is to use virtual sources, loads, and flow

to identify energized buses in distribution systems.

� A new hybrid algorithm that combines mathematical programming and the neighborhood

search method is designed to solve the computationally difficult repair and restoration problem.

The algorithm starts by solving the co-optimization problem using an assignment-based

method, and then a neighborhood search method is designed to iteratively improve the

solution. The proposed method outperforms commercial solvers and can be easily updated in

case of a change in outage status.

� A two-stage SMIP is developed for optimizing service restoration in distribution networks

with uncertain repair time, demand, and solar irradiance. The SMIP model is decomposed

into two stochastic subproblems and solved using Progressive Hedging.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, a review of the literature and

background information on utility practices are provided. The chapter covers disaster preparation,

distribution network restoration, crew routing, and previous work on the combined repair and

restoration problem. Chapter 3 presents the disaster preparation problem. The chapter starts with

a brief introduction on stochastic optimization, followed by a fragility analysis approach to estimate

the impact of upcoming extreme events. Then, a two-stage SMIP is developed for preallocating

the crews and equipment and the Progressive Hedging algorithm is introduced. Chapter 4 presents

the distribution system repair and restoration problem (DSRRP). A MILP model for solving the

repair and restoration problem by coordinating crews, equipment, and the recovery operation of the

distribution network is developed. Chapter 5 presents the stochastic model used for solving the

repair and restoration problem with uncertainty. Chapter 6 presents a summary of the dissertation,

an outline of the contributions, and a discussion of future work.
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CHAPTER 2. LITERATURE REVIEW

2.1 Overview

This chapter presents a review of the literature and background information on utility practices.

Utility practices are discussed in Section 2.2, starting from preparation procedures to damage

restoration. Section 2.3 provides a review on disaster preparation. Section 2.4 summarizes the

methods for solving the crew routing problem. Section 2.5 summarizes the current research on

distribution network restoration and presents some of the efforts that have been enacted to combine

the crew routing and power recovery operation problems.

2.2 Utility Practices

Electric utilities have their own plans for service restoration, which may be different from

one utility to another in terms of operating procedures, labor agreements, crew management, etc.

Though detailed restoration procedures are different, the general steps can be summarized as follows

[9, 10]:

2.2.1 Proactive Response

When a severe weather event is predicted, utilities position repair crews and supplies in (or near)

the areas that are expected to suffer the greatest damage. In addition, utilities can acquire services

from crews in neighboring utilities and reach out to contractors. Pre-staging crews, equipment

and other resources safely before a severe event allows for a quick response and efficient resource

management.
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2.2.2 Outage Management

In their movement to modernize distribution networks, electric utilities have been investing in

the area of distribution grid management. Three key operational technologies DMS (Distribution

Management System), SCADA (Supervisory Control and Data Acquisition), and OMS (Outage

Management System) have been integrated to increase distribution operation efficiency. This

integrated platform is utilized in outage management processes and in normal operations. The

integrated system is designed to provide real-time monitoring and control of distribution systems. It

allows operators to control important operational devices such as distribution breakers, sectionalizing

switches, reclosers, voltage regulators, and other devices. Reclosers and sectionalizing switches are

critical for fault location, isolation, and service restoration (FLISR). Reclosers detect and interrupt

faults and the sectionalizer opens and isolates the faulty section of the network. The recloser is

then closed so that the healthy part of the network is supplied. OMS tracks impacted areas in

the network by integrating data from geographic information systems (GIS), customer information

system (CIS), Interactive Voice Response systems (IVR) for handling customer calls, SCADA, and

smart meters after outages. This integration allows utilities to automatically update the work

crews with information about outages and their locations. OMS also assists with crew management,

restoration time estimation, and identifying critical facilities that are impacted.

2.2.3 Damage Assessment

After an extreme weather strikes the electric grid and outages occur, the OMS collects information

from different sources and provides the likely locations of the problems in the grid. Field assessors

are dispatched to identify the exact locations of the damage as well as document and analyze them.

The damage information is communicated back to the operator. This damage assessment data is

essential so that utilities can estimate the repair times and route the repair crews more effectively

with the required equipment. In extreme cases, damage assessment can also be conducted through

aerial survey [11].
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2.2.4 Managing Tree Damage

Trees falling on distribution lines is one of the leading outage causes especially after storms and

high winds. Utilities deploy tree crews to damage sites to clear the area before the repair crews

(also known as line crews) start to repair the damaged components and reenergize the damaged

lines. Therefore, the utilities must coordinate tree and line crews for an efficient repair and recovery

operation.

2.2.5 Prioritizing Restoration

Large numbers of residential customers, hospitals, police and fire departments, schools, or other

important facilities may lose energy after a severe event. Each utility has its own priority list but it

can be generally summarized as follows:

� Crews first clear and isolate live power lines and any hazards to the public.

� Substations are restored. Transmission lines are restored, as well, but by different crews

responsible to their owners.

� Local distribution substations are checked and repaired by service crews and engineers in case

of a failure.

� The next priority is the main distribution line attended by the line crews.

� Out-of-service critical consumers like hospitals are given a higher priority while repairing the

lines.

� Line crews fix tap lines based on restoring service to the greatest number of customers.

� Individual customers are last in the repair schedule.

In general, utilities schedule the repair using predefined restoration priority lists based on the priority

of the consumers, number of consumers and previous experiences. Some utilities use a simple greedy

algorithm to determine the restoration sequence [12], other rely on the experience of the operators.

An optimization process can help the operator and greatly decrease the restoration time.
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2.3 Disaster Preparation

Disaster preparation is a well-studied research area. In [13], a two-stage stochastic programming

model was developed to select the storage location of medical supplies, and the required number of

different types of supplies before a disaster. The objective of the developed model was to minimize

the operation cost of the warehouses, the total transportation time, and the unfulfilled demand. A

similar stochastic problem was tackled in [14], while considering the impact of the disaster on the

warehouses. The paper used Benders Decomposition to solve the stochastic model. The authors in

[15] developed a multi-objective mixed integer linear program to determine the location of emergency

facilities, resource allocation and relief distribution for flood preparation. Reference [16] developed

a two-stage SMIP model to acquire and allocate relief assets. The first-stage decisions included

expansion of resources for warehouses, medical facilities, and shelters. In the second stage, the

resources are deployed to help the population. Another SMIP approach was presented in [17]. The

goal of the presented model was to place enough materials at shelter location within the first 12

hours of a forecasted hurricane to accommodate the community’s need for the first 48 hours. In

[18], a MILP and a Lagrangian relaxation method were developed for locating emergency shelters

and medical centers, and maintaining ambulances. The authors in [19] used robust optimization

to produce a logistic plan for mitigating demand uncertainty in humanitarian relief supply chains.

A multi-objective robust model for humanitarian relief logistics was developed in [20]. The paper

considered demand and supply uncertainty and considered the possibility that some supplies may

be damaged during the event. In [21], the authors developed a p-robust optimization model, which

combines robust optimization with Monte Carlo simulation, for determining the location of relief

bases, number of rescue vehicles, and other relief supplies. A min-max robust model is developed in

[22] to optimize the relief facility location and preposition emergency supplies for disaster preparation.

However, further research is needed on disaster preparation in the context of power system and

its infrastructure. In [23], the authors divided the power network into different areas/cells, and

developed a MILP to find the optimal number of depots and their locations. Each area was assumed

to have a specific demand and can only contain one depot. The objective was to minimize the
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transportation cost between the predefined areas. A storage and customer allocation problem

was presented in [24]. The authors developed a multi-objective stochastic mixed-integer program

that determines which warehouse to use and the number of resources to store in each warehouse.

The objectives were to minimize the amount of unsatisfied demand, the transportation cost of the

resources between the warehouses, and the investments and maintenance cost of the warehouses.

Reference [25] developed a SMIP model and a column generation approach for stockpiling resources

before a disaster. The developed approach focused on determining the quantity and type of

equipment, while neglecting the crews and the distances between the warehouses and the damaged

components. In [26], a heuristic method for positioning repair crews is developed.

The distribution system preparation problem is a challenging one because it combines the

combinatorial optimization problems of depot location, equipment transportation and allocation, and

crew allocation. The preparation problem is inherently stochastic, as the damaged components and

the required resources are not known beforehand. This makes it a complex stochastic combinatorial

optimization problem. The previous work approached the preparation stage by dividing the electric

network into different areas, with each area having a specific demand. This kind of approach

neglects the individual components within each area and the distances between these components

and the depots. Moreover, the interdependence between the location and number of crews, damaged

components in the network, and the number of resources required to repair the damage was not

examined in the preparation stage. Crews should be positioned near the damaged components,

and the equipment should be allocated such that the crews have the required equipment for the

repairs. We propose a two-stage SMIP to model the preparation problem in Chapter 3. The

proposed SMIP leverages assignment, allocation, and transportation modeling techniques to model

the interdependencies of the depots, crews, equipment, and damaged components.

2.4 Crew Routing and the Vehicle Routing Problem

In this dissertation, crew routing is modeled as a Vehicle Routing Problem (VRP). VRP

is a combinatorial optimization problem that has been studied in operations research, applied
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mathematics, and computer science for decades. VRP is an NP-hard problem which is known to

be a computationally difficult problem, obtaining an optimal solution for this problem is almost

impossible, and providing reliable and fast solutions is a challenging task. In its simplest form, VRP

is known as the Traveling Salesman Problem (TSP) which is also a well-studied problem. TSP

consists of one vehicle, a single depot (station) as a starting point, and multiple locations to be

visited (damaged components in the context of repair crews). The vehicle/crew starts from the

depot, travels to each damaged component to conduct the repairs, then returns to the depot. The

objective is typically to find the shortest possible route. VRP is the same as TSP but with multiple

crews. For a detailed review on VRP, the readers can refer to [27]. In this section, a summary of

the main variations of VRP and the techniques used to solve the problem are presented. VRP has

been modified in many ways by researchers through the introduction of real-world aspects. One

of the classical VRP variations is the capacitated vehicle routing problem (CVRP). CVRP can be

defined as a VRP where a fleet of vehicles must service a specific number of customer demands, and

the total demand that each vehicle serves does not exceed the capacity of the vehicle. Adding time

restrictions on VRP produces the VRP with time window (VRPTW) problem. The combination

of CVRP and VRPTW is known as CVRPTW (capacitated vehicle routing problem with time

windows). In real-world application, delivery companies normally have more than one depot from

which they can serve their customers, A VRP with multiple depots is known as the multi-depot

vehicle routing problem (MDVRP). In the context of repair crew routing, crews may have to return

to depots and pick up equipment to conduct the repairs, this problem is referred to as VRP with

pickup and delivery (VRPPD). Stochastic VRP (SVRP) is another variation of VRP, in which, the

demand, travel time, or service time are random parameters.

In terms of modeling, VRP is commonly modeled using either Integer Programming (IP) or

MILP [28]. Graph theory and network flow models [29] are also used to represent VRP. Other models

include knowledge-based [30], time space [31] and Constraint Programming (CP) [32] models. CP

has the same structure as mathematical programming but includes logical operations and relations.

Methods for solving VRP and its variations include exact and heuristic algorithms. Though exact
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methods, such as cutting-plane approaches (e.g., branch-and-cut and branch-and-bound), dynamic

programming, and column generation are only used for small instances as it is impossible to solve

large instances with the current technology [33]. The choice of solution method depends on the type

of problem being solved and the approach must be tailored to the problem. In this dissertation, we

design a hybrid method that combines mathematical programming and a metaheuristic algorithm

to solve the repair and restoration problem in Chapter 4. Specifically, the problem is modeled

as a MILP problem and large neighborhood search is deployed for exploring different solutions.

The combination of mathematical programming and heuristic algorithms is known as matheuristic

methods, which has gained considerable interest in recent years [34]. In Chapter 5, a decomposition

method coupled with the Progressive Hedging algorithm is used to solve the stochastic DSRRP

(S-DSRRP). Table 2.1 summarizes some of the methods used for solving VRP.

Table 2.1 Solution algorithms for solving VRP

Type Solution Algorithm Ref. Problem

Exact

Lagrangian relaxation + decomposition [35] CVRPTW+VRPPD

Column generation [36] Heterogeneous CVRP

Branch-and-price [28] VRP with roaming locations

Branch-and-cut [37] CVRP with unloading constraints

Heuristic

Guided Local Search [38] VRPTW with backhauls

Simulated annealing [39] CVRP for hybrid vehicles

Greedy randomized adaptive search [40] VRPTW with precedence

Tabu search [41] CVRP

Large neighborhood search [42] VRP with cross-docking

Genetic Algorithm [43] CVRP

Ant colony optimization [44] CVRP

Particle swarm optimization [45] SVRP

Cluster-first route-second [46] VRP with backhauls

2.5 Distribution Network Restoration

There has been considerable progress in power system restoration techniques [47, 48]. A variety

of algorithms have been proposed for load restoration, including heuristic techniques [49], dynamic

programming [50] and multi-agent systems [51]. Network reconfiguration is one of the most commonly
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used methods to restore a power distribution system. The authors in [52] developed a reconfiguration

formulation using a variation of the fixed charge network problem for service restoration. Recent

studies have shown distributed generators (DGs) have the potential to assist outage management.

In [53], a mixed-integer conic program and mixed-integer linear program were developed for network

reconfiguration with the objective of minimizing the losses. The developed model included a spanning

tree approach to enforce radiality and incorporated DGs. A MILP model and genetic algorithm

were used in [54] for distribution network reconfiguration. The authors used graph theory to model

the distribution network. Reference [55] developed another MILP model for distribution systems.

The model included network reconfiguration, DG operation, and load management. The authors in

[56] proposed a two-stage robust optimization model for distribution system restoration, and the

model was solved using a column generation algorithm. The first stage determined the switching

operation, and the loads were restored in the second stage. Reference [57] proposed a decentralized

agent-based method for service restoration. The developed approach divided the distribution system

into several zones, where each zone was represented by an agent. The role of each agent was to

maintain radial topology and operation limits, and maximize the served loads.

More recently, researchers investigated the use of microgrids for distribution system restoration.

The operation of multiple microgrids, with defined boundaries, in coordination with the distribution

system has been investigated in [58] and [59]. The papers used stochastic programming for

distribution system restoration with high penetration of DGs, including PV systems and BESS.

A decentralized method for coordinating networked microgrids and the distribution system was

presented in [60]. The authors modeled the operation of each microgrid as a second-order cone

program and the coordination between the entities was achieved using the alternating direction

method of multipliers algorithm. Other studies proposed sectionlaizing the distribution network

into microgrids; i.e., microgrids with dynamic boundaries. The authors in [61] presented a MILP for

microgrid formation of radial distribution networks to restore critical loads after outages. In [62],

the authors developed a two-stage stochastic mixed-integer nonlinear program to sectionalize the

distribution network into multiple self-supplied microgrids. The paper included dispatchable DGs,
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such as microturbines and BESS, and PV systems. PVs and BESS were also considered in [63] for

load restoration after wildfires. In the above references, fault isolation was not considered in the

proposed models, making them hard to be implemented in practice. In [64], a multi-agent method

was used for fault isolation and service restoration. The authors in [65] considered fault isolation

constraints in a mixed integer second-order cone programming model. The authors assumed that

all lines have switches and simplified the problem by assuming faults occur only on the buses. In

[66], a heuristic method, i.e., Particle Swarm Optimization, was used for reconfiguration and fault

isolation. The repair process of damaged components was either assumed to be taking place at

a later time, or the times when the components are energized were assumed to be known in the

aforementioned literature.

Although distribution system restoration has been long studied, there exist few efforts on

integrating repair scheduling with recovery operations in power distribution systems. A pre-

hurricane crew mobilization mathematical model was presented in [67] for transmission networks.

The authors used stochastic optimization to determine the number of crews to be mobilized to the

potential damage locations. Also, the authors proposed a post-hurricane MILP model to assign

repair crews to damaged components without considering the travel times and repair sequence.

In [68], the authors developed a stochastic program that assigns crews to substations in order to

inspect and repair the damages, but the approach neglected crew routing. The authors in [69] used

the queuing theory and stochastic point processes to determine the repair schedules. Reference

[70] presented a dynamic programming model for dispatching crews to manually operate switches

in the distribution network. Routing repair crews in transmission systems has been discussed by

Van Hentenryck and Coffrin in [12]. The authors presented a deterministic two-stage approach to

decouple the routing and restoration models. The first stage solved a restoration ordering problem

using MILP. The ordering problem formulation assumed that only one damaged component can be

repaired at each time step. The goal of the first stage was to find an optimal sequence of repairs to

maximize the restored loads. In the second stage, the crew routing problem was solved using CP,

large neighborhood search, and a randomized adaptive decomposition.
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To the best of our knowledge, a single mathematical model that combines crew routing and

power operation was not presented in the literature until our work in [71] and [72]. The papers

in [73, 74, 75] adopted our work in [71] for different applications. The authors in [73] integrated

natural gas system into the repair and restoration problem and [74] included mobile power source

dispatch. In [75], a model for combining crew dispatch and switching operations is developed.

In this dissertation, a new novel MILP model for unbalanced distribution systems and resource

coordination is presented in Chapter 4, in addition to a neighborhood search-based algorithm for

solving the co-optimization problem.

2.6 Summary

This chapter provides a description and literature review for the research topics covered in this

dissertation. Section 2.2 starts with a summary of the responsibilities and measures that utilities

take after weather-related outages. Disaster preparation is discussed in Section 2.3. The routing

problem is discussed in Section 2.4, and distribution network repair and restoration is covered in

Section 2.5.
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CHAPTER 3. A STOCHASTIC MULTI-COMMODITY LOGISTIC MODEL

FOR DISASTER PREPARATION IN DISTRIBUTION SYSTEMS

3.1 Overview

Outages due to weather-related events cause significant damage to the power grid infrastructure.

This threat to the electric grid has raised a growing need to address disaster management and

power system resilience. Disaster management consists of four phases: mitigation, preparedness,

response, and recovery. For power systems, the mitigation and preparation phases include long-term

and short-term pre-disaster planning. Tree trimming, pole hardening, and distributed generator

installation belong to long-term pre-disaster planning. Short-term pre-disaster planning includes

acquiring and allocating crews and equipment and selecting staging areas. The response and recovery

phases are post-disaster actions that include damage assessment [11], crew dispatch and repair

scheduling, and service restoration [72]. Effective disaster management measures can improve power

system resistance during extreme events and accelerate recovery after events. The focus of this

chapter is to study the short-term pre-disaster preparation problem, which is critical to achieve

resiliency. Pre-disaster planning enables efficient post-disaster recovery by ensuring there are enough

and optimal number of equipment and crews in the right places to quickly conduct the repairs.

After severe events, utility companies dispatch emergency crews to assess and repair the damage

in order to restore power as fast as possible. A major challenge that utilities face is the lack of

resources, including human resources and equipment, to handle extreme events. Once utilities

request assistance from neighboring companies, they are facing another task of managing the newly

acquired resources. Utilities must provide water, food, and shelter and communicate differences in

work practices to the visiting crews. For these reasons, early preparation is essential to deal with

upcoming extreme or severe weather events. We aim to develop a method to assist utilities in their

preparation process by identifying the required resources and preallocating the crews and equipment.
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Fig. 3.1 illustrates the proposed pre- and post-event framework. First, the forecasted weather and

fragility models of the components are used to generate damage scenarios. For each scenario, we

solve a power flow (PF) problem to identify critical components that must be repaired to restore

service for high-priority customers. This information is used in the stochastic crew and resource

allocation problem (SCRAP) to ensure there is enough equipment to repair the critical components.

Once the weather event hits the distribution system, the repair and restoration problem is solved to

restore the network to its normal state [73, 74, 76]. The distribution system repair and restoration

problem is presented in Chapter 4. This chapter focuses on the steps before the weather event

occurs.

Weather Forecast

Damage Scenario Generation

PF PF PF PF

Scenarios

s = 1 s = 2 s = 3 s = |S|

Stochastic Crew and Resource Allocation

Distribution System Repair and Restoration

Pre-event phase

Post-event phase

Figure 3.1 Framework for extreme event proactive recovery operation.

The rest of this chapter is organized as follows. Section 3.2 gives a brief introduction into

stochastic programming. Fragility analysis and scenario generation are discussed in Section 3.3. A

two-stage SMIP is developed in Section 3.4 for allocating crews and resources before a disaster. The
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Progressive Hedging algorithm is introduced in Section 3.5. The method is tested on modified IEEE

123-bus distribution test system in Section 3.6.

3.2 Introduction to Two-Stage Stochastic Programming

Stochastic programming (SP) is a mathematical modeling optimization method where part of

the data incorporated is uncertain. SP is a conventional and widely used approach for handling

uncertainty in many real-world areas such as finance, healthcare, transportation, and energy planning

[77]. Uncertainty can range from a few possible outcomes (scenarios) to an infinite number of

scenarios, where the probability distributions of the data are known or estimated. One way to

formulate a stochastic program is the two-stage approach, which is also known as the recourse model.

In a two-stage stochastic program, a decision is made in the first stage before knowing the outcome

of a random event. After the random event occurs, a recourse decision is taken in the second stage

in response to the first-stage decisions and the random event. When the number of events/scenarios

is finite, a two-stage stochastic linear program can be modeled as a single large linear programming

model, where each constraint in the problem is duplicated for each realization of the random data.

For problems where the number of realization is too large or infinite, the Monte Carlo sampling

technique can be used to generate a manageable number of scenarios. The two-stage stochastic

program can then be defined as follows:

ζ = min
x,ys

aTx+
∑
∀s

Pr(s) bTs ys (3.1)

s.t. (x,ys) ∈ Qs, ∀s (3.2)

where a and bs are vectors containing the coefficients associated with the first stage (x) and second

stage (ys) variables in the objective, respectively. The restriction (x, ys) ∈ Qs represents the

subproblem constraints that ensure a feasible solution. Pr(s) is the probability of occurrence for

scenario s.
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3.3 Damage Scenario Generation

Prepositioning crews and resources is subject to uncertain damage states of distribution lines.

In this study, the uncertainty is represented by a finite set of discrete scenarios, which are obtained

using a Monte Carlo sampling procedure. The Monte Carlo sampling method generates |S| number

of scenarios with equal probability (1/|S|). The focus of this dissertation is on the impact of strong

wind events, such as hurricanes and windstorms. Since the study focuses on wind-related failures,

we only consider overhead distribution lines. To generate damage scenarios, we first estimate the

wind speed that will affect the distribution system. In this section, we simulate hurricane events for

illustration.

3.3.1 Hurricane Model

Since distribution networks cover small geographical areas, we assume that the wind speed

experienced by all components in a distribution network is the same at any given moment [7]. The

wind speed w(t, s) that impacts the distribution network at time t and scenario s is modeled using

the inland wind decay model [78], which is expressed by the following equation:

w(t, s) = wb + (Rw0
s − wb)e−αt − Cw (3.3)

where w0
s is the maximum sustained surface wind speed at landfall in scenario s; α = 0.095h-1 is

the decay constant; wb = 26.7 knots (kt) is the background wind speed; and R = 0.9 is a reduction

factor that represents the abrupt wind speed decrease as hurricanes make landfall. The value of w0
s

can be obtained from the National Hurricane Center. In this study, we simulate this value using

a logonormal distribution [79] to generate the scenarios. Cw in (3.3) represents the effect of the

distance inland, which is calculated using the following equation:

Cw =
(
clt(t0 − t)

)
ln
(DI

D0

)
+ dlt(t0 − t) (3.4)

where DI is the distance inland to the hurricane landfall location; D0 = 1 km; t0 = 50 h; cl =

0.0109 kt h-2; and dl = -0.0503 kt h-2.
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3.3.2 Fragility Models

Distribution systems consist of substations, distribution lines, distribution poles, and other

electrical equipment associated with the protection and control of the system. Based on the study

in [80], substations have low failure and damage rates during storms and hurricanes. Therefore, this

study targets the failure of distribution lines. Distribution lines are modeled using edges that connect

distribution buses, which connect customers to the distribution network. Distribution lines include

poles and conductors between the poles. Damage of a single pole or conductor on a distribution line

renders the line inoperable. Therefore, we conduct fragility analysis for each pole and conductor in

the system, while assuming that the fragility of different components is independent.

3.3.2.1 Pole failure

Using the fragility model presented in [81], the probability of failure for pole z is found using

the following equation:

ppz(w) = min{apebpw, 1} (3.5)

where ap and bp are constants related to pole properties, and w is the wind speed.

3.3.2.2 Conductor failure

Conductors between distribution poles are prone to failures due to strong winds and falling

trees during severe events [81]. Define pwl as the direct wind-induced damage probability, and ptl

as the damage probability due to a fallen tree near conductor l [82, 7]. The wind-induced damage

probability of a conductor is calculated using the ratio of the maximum perpendicular force that

the conductor can endure F fl and the conductor wind loading Fwl [82]. The wind loading and pwl

are calculated by [83]:

ql(w) = 0.613(G1G2G3w)2 (3.6)

Fwl (w) = Lcl ×Dc
l × ql(w)× Cf (3.7)

pwl (w) = min{Fwl (w)/F fl , 1} (3.8)
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Equation (3.6) calculates the dynamic pressure ql(w) (N/m2), where G1, G2, and G3 are factors

related to the topography, ground roughness, and a statistical factor depending upon the level of

security required. Lcl is the length (m) and Dc
l is the diameter (m) of conductor l, and Cf is a force

coefficient [83]. As for the damage due to fallen trees, the probability is modeled by [84]:

ptl(w) =
eh(Sw

l )

1 + eh(Sw
l )

(3.9)

h(Swl ) = ah + ch(klS
w
l )Dbh

H (3.10)

where ah, bh, and ch are parameters associated with tree species, Swl is the estimated storm severity

on conductor l (which varies from 0-1), kl is a factor that represents the local terrain effects, and

DH is the tree diameter at breast height.

3.3.3 Equipment

The damage state of a component is determined using Bernoulli distribution (Bernoulli(p)),

which takes the value of 1 (damaged) with probability p, and 0 (functional) with probability 1− p.

For each scenario, we evaluate the status of the system using the maximum sustained wind speed

w̄s = max∀t{w(t, s)},∀s. Therefore, the damage state of pole z in scenario s is determined by the

outcome of the random variable ψpolez,s ∼ Bernoulli(ppz(w̄s)). A conductor can either be damaged by

wind force ψwindl,s ∼ Bernoulli(pwl (w̄s)) or tree ψtreel,s ∼ Bernoulli(ptl(w̄s)). Consequently, the damage

state of conductor l is determined as ψcondl,s = ψwindl,s ∨ ψtreel,s . After assessing the state of damage

for each conductor and pole in the network, we can estimate the amount and type of equipment

required to repair the damaged components. Although distribution networks include many types of

components, we classify them into the following categories:

� Type 1: Poles for 3-phase lines

� Type 2: Poles for 1- and 2-phase lines

� Type 3: 3-phase transformers with protective equipment

� Type 4: 1-phase transformers with protective equipment

� Type 5: Conductors
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The line segment connecting two distribution buses consists of poles and conductors, as shown in

Fig. 3.2, where line 2–5 has one damaged pole and line 5–6 has one damaged conductor. In case of

a damaged bus, such as bus 3 in Fig. 3.2, both lines 2–3 and 3–4 are affected. To avoid repetition

when calculating the number of equipment required and repair time, we associate the poles on

shared buses (e.g., pole at bus 3 for lines 2–3 and 3–4) with the line that has the bus with the

lowest index (line 2–3). The number of type τ equipment required for line k in scenario s can be

calculated using the following equations:

Rk,τ,s =
∑

z∈Ωp
L(k,τ)

ψpolez,s ,∀k, τ ∈ {1..4}, s (3.11)

Rk,5,s = nφkL
c
l

∑
l∈Ωc

L(k)

ψcondl,s , ∀k, s (3.12)

where Ωp
L(k, τ) is the set of type τ equipment for the poles on line k, Ωc

L(k) is the set of conductors

on line k, and nφk is the number of phases for line k. Equation (3.11) calculates the number of

pole-related equipment and (3.12) calculates the amount of conductor required.

Figure 3.2 Single line diagram of a distribution network

3.3.4 Repair Time

The repair times for the damaged lines are estimated based on the number of damaged conductors

and poles. The repair time for a damaged distribution pole is assumed to satisfy a normal distribution

with mean 5 hours and 2.5 hours standard deviation (rpz,s ∼ N (5, 2.5)) [81]. For damaged conductors,
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the repair time is assumed to satisfy a normal distribution with mean 4 hours and 2 hours standard

deviation (rcl,s ∼ N (4, 2)) [81]. The estimated time to repair a damaged line is found by adding the

repair times of the damaged poles and conductors of the line, as follows:

ETLk,s =
∑

z∈Ωp
L(k)

ψpolez,s rpz,s +
∑

l∈Ωc
L(k)

ψcondl,s rcl,s, ∀k, s (3.13)

According to the report in [85], the average time to remove a tree after a storm is 1 hour. Therefore,

the tree removal time for each line, in hours, is estimated by calculating the number of downed trees

on the line:

ET Tk,s =
∑

l∈Ωc
L(k)

ψtreel,s ,∀k, s (3.14)

3.3.5 Critical Components

After extreme events cause large-scale outages, it is imperative to quickly restore power to critical

sites, such as hospitals, community shelters and emergency dispatch centers. Therefore, we must

ensure that there are enough equipment and resources to repair vulnerable lines near critical sites.

A MILP model is used to solve a PF problem to determine the critical lines to be repaired, so that

all critical loads are restored. If one pole or conductor on a line is damaged, then the whole line is

considered to be damaged and cannot be operated. The binary variable ULk,s is used to indicate the

damage state of line k, ULk,s = 1 if ψpolez,s = 1 or ψcondl,s = 1 for any (i, l) ∈ k. For example, both lines

2–5 and 5–6 are damaged in Fig. 3.2, therefore, UL2–5 = UL5–6 = 1. The set of damaged lines ΩDL(s)

can then be found by using the binary variable ULk,s, such that ΩDL(s) = {k|ULk,s = 1, ∀k, s}. Define

binary variables uk which equals 1 if line k is repaired and 0 otherwise, and yi as the connection

status of load at bus i. The MILP for identifying the critical components is formulated as follows:

min
∑

k∈ΩDL(s)

uk (3.15)

subject to yi = 1,∀i ∈ ΩCD (3.16)

subject to power operation constraints (Chapter 4)
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where ΩCD is the set of buses with critical loads. In this section, we provide a summary for the

model. The objective (3.15) minimizes the number of lines to repair. Constraint (3.16) indicates

that all critical loads must be served. Furthermore, power operation constraints such as power flow,

network reconfiguration, fault isolation, and distributed generator dispatch are used in the model

[76]. The power operation constraints are detailed in Chapter 4. Consider the distribution network

shown in Fig. 3.3, with a critical load located at bus 7, and 5 damaged lines. In order to restore

the load at bus 7 with minimal repairs, line 9–10 must be repaired (u9−10 = 1), switch 5–12 closed,

and switches 1–2 and 4–5 opened to keep the damaged lines isolated. If line 9–10 requires 2 poles

to repair, then the utility must have a minimum of 2 poles in their inventory. The PF model is

solved for each generated scenario s. The set of critical lines ΩCL(s) for scenario s can then be

found as: ΩCL(s) = {k|uk = 1,∀k ∈ ΩDL(s), s}. This information is used in the SCRAP model in

the following section.

Damaged Line

1 3 4 7

DG

2 5 6

8 9 10 11 12

13 14 15 16 17

Normally Open Switch Normally Closed Switch

Figure 3.3 Single line diagram of a distribution network with one critical load

3.4 Stochastic Crew and Resource Allocation

The decision variables in the two-stage crew and resource allocation problem can be divided into

two groups. The first group is the first-stage variables that are determined before the realization of

the uncertain parameters. These variables include the number of external equipment and crews

(EId, LId, T Id), the number of equipment and internal crews transferred between depots d and e

(Ed,e,τ , Ld,e, Td,e), and the number of equipment in each depot d (EDd,τ ). Furthermore, a decision on

utilizing a depot is made in the first stage using binary variable (νd), while the location of each
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crew is determined using binary variable (δd,c). The second part contains the second-stage variables,

which are decided according to specific realization of the uncertainty. The second-stage variables

are indexed by s to indicate the response for the specific scenario. In this stage, the crews are

assigned to damaged lines (ALk,c,s, A
T
k,c,s) to ensure they are staged near the damaged lines, and the

expected working hours for each crew (Hc,s) is estimated. Also, the number of additional equipment

required (Ed,τ,s) to finish the repairs is determined in this stage. Fig. 3.4 provides an illustration for

the SCRAP model, which includes the following steps: 1) depots are selected; 2) different types of

equipment are allocated to depots; 3) line and tree crews are allocated to the depots; 4) equipment

is assigned to crews; and 5) crews are assigned to damaged components. The two-stage stochastic

crew and resource allocation problem is formulated in the following subsections, and Table 3.1

provides the nomenclature.

Equipment

Depots

Line Crews

Tree Crews

Damaged
Components

Crew allocated to depotsEquipment assigned to crews

Damaged by a treeDamaged Line Depot not selected

Crew 
assignment

Equipment 
allocated to depots

Figure 3.4 Crew and equipment allocation
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Table 3.1 Nomenclature for the SCRAP Model

Indices and sets

k, c, s, τ Indices for distribution line, crew, scenario and resource type

d/e Indices for depot (staging site)

CL, CT , IC Set of line crews, tree crews, and internal crews

ΩCD,ΩP Set of buses with critical loads and set of depots

Parameters

CEd , CHd The capacity of depot d for storing the supplies and capacity for accommodating the

crews

CRτ The capacity required to store resource τ

Dk,n Distance between components k and n damaged line

D̄ Maximum distance allowed between a crew’s location and assigned damaged line

ETLk,s, ET
T
k,s Estimated time to repair line k for line and tree crews

E0
d,τ , L

0
d, T 0

d Initial number of equipment, line crews and tree crews at d

M Large positive number

PDd ,PEIτ Cost of staging depot d and ordering equipment τ

PHc ,PEC Hourly pay for crew c and cost of obtaining an external crew

PLFτ ,PR Penalty costs for late delivery of equipment τ and penalty on restoration time

PTEd,e,τ Cost of transporting equipment τ between locations d to e

Pr(s) Probability of scenario s

Rk,τ,s The number of type τ resources required to repair line k in scenario s

UTk,s Binary random variable equals one if line k in scenario s is damaged by a tree

ULk,s Binary random variable indicating the damage state of line k in scenario s

νmax Maximum number of depots that can be selected
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Table 3.1 (Continued)

Decision Variables

A
L/T
k,c,s Binary variable equal to 1 if line k is assigned to line/tree crew c in scenario s

δd,c Binary variable equals 1 if crew c is positioned in depot d

Ed,e,τ Number of τ supplies transferred between depots d and e

ECc,d,τ,s The amount of type τ supplies that crew c obtains from depot d in scenario s

Ed,τ,s Additional τ supplies required in depot d scenario s

EId,τ , E
D
d,τ Number of τ supplies ordered to depot d and the total number of τ supplies at d

Ld,e, Td,e Number of line and tree crews transferred from depot d to e

LId, T Id Number of external line and tree crews positioned at depot d

LLs ,LTs The expected times of the last repair conducted by the line and tree crews

Hc,s Number of hours crew c is expected to work in scenario s

νd Binary variable equals 1 if depot d is staged

3.4.1 Objective

min
∑
∀d,e,τ
PTEd,e,τEd,e,τ +

∑
∀d,τ
PEIτ EId,τ+

∑
∀d

(
PEC(LId + T Id) + PDd νd

)
+

∑
∀s

Pr(s)(
∑
∀c
PHc Hc,s +

∑
∀d,τ
PLFτ Ed,τ,s + PR(LTs + LLs )) (3.17)

The first two lines in (3.17) are for the first-stage objective, which aims to minimize the costs of

equipment transportation, ordering equipment and external crews, and staging depots. The third

line in (3.17) is dependent on the realization of the uncertainty, i.e., the second-stage objective. The

first term in the second-stage objective minimizes the labor costs associated with the crews. The

second and third terms are penalty costs. We add a penalty cost for unmet equipment demand

and penalize the time needed to repair all components. The penalty PLFτ minimizes the shortage
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of equipment. The purpose of penalizing the expected time of the last repair is to minimize the

system restoration time.

3.4.2 First-Stage Constraints

In the first stage, the depots are selected and both equipment and crews are allocated to the

selected depots in anticipation of an extreme event. Constraints (3.18)-(3.25) represent the first-stage

constraints.

3.4.2.1 Depot Selection

1 ≤
∑
∀d

νd ≤ νmax (3.18)

0 ≤
∑
∀τ
CRτ EDd,τ ≤ CEd νd, ∀d (3.19)

0 ≤
∑
∀c
δd,c ≤ CHd νd,∀d (3.20)

The number of selected depots is limited to νmax in (3.18), and at least one depot must be

selected. Each depot, if selected, can contain a limited amount of equipment, as enforced by (3.19).

Constraint (3.20) limits the number of crews in depots. A depot can accommodate a limited number

of crews depending on its resources. The limits in (3.19) and (3.20) are multiplied by νd so that if

the depot is not selected, it will have no crew or equipment.

3.4.2.2 Crew and Equipment Allocation

EDd,τ = E0
d,τ +

∑
∀e,e 6=d

Ee,d,τ −
∑
∀e,e 6=d

Ed,e,τ + EId,τ , ∀d, τ (3.21)

∑
∀c∈CL

δd,c = L0
d +

∑
∀e,e 6=d

Le,d −
∑
∀e,e 6=d

Ld,e + LId,∀d (3.22)

∑
∀c∈CT

δd,c = T 0
d +

∑
∀e,e 6=d

Te,d −
∑
∀e,e 6=d

Td,e + T Id, ∀d (3.23)
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∑
∀d

δd,c = 1,∀c ∈ IC (3.24)

∑
∀d

δd,c ≤ 1,∀c /∈ IC (3.25)

Constraints (3.21)-(3.23) model the transportation of equipment, line crews, and tree crews,

respectively. The three constraints are formulated using flow conservation equations. For instance,

the constraint for the equipment (3.21) states that the amount of type τ equipment in depot

d is equal to the sum of equipment initially in the depot, equipment transferred to the depot,

newly obtained equipment, and minus the equipment transferred to other depots. The summations∑
∀c∈CL δd,c and

∑
∀c∈CT δd,c are the number of line and tree crews in depot d, respectively. The

first term in the right-hand side of (3.22) is the number of line crews initially present in depot d.

The second term represents the number of line crews transferred to depot d and the third term is

the number of line crews transferred from depot d. The last term LId is the number of visiting line

crews to be positioned in depot d. Similarly, constraint (3.23) is designed for tree crews. Constraint

(3.24) states that each internal crew must be located in one of the depots, while external crews can

be either located in one depot, or not used; i.e., δd,c = 0, as enforced by (3.25).

3.4.2.3 Symmetry-Breaking Constraints

The presented problem allow a large number of feasible symmetric solutions with equal objective

value. Therefore, we add symmetry breaking constraints to keep at least one solution and remove

all other symmetric solutions. Consider a case where there are four line crews and three potential

depots. Assume that depot 1 and depot 3 are selected, and all four crews must be allocated. In this

case, there are four possible solutions for allocating the crews:

δd,c =


1 1 0 0

0 0 0 0

0 0 1 1

 ≡


1 0 1 0

0 0 0 0

0 1 0 1

 ≡


0 1 0 1

0 0 0 0

1 0 1 0

 ≡


0 0 1 1

0 0 0 0

1 1 0 0

 (3.26)

To deal with the symmetry problem in (3.26), we allocate the crews to the depot starting from

the lowest indexed row and column. Therefore, for δd,c = 1, all depots with indices d̄ < d must
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not have any crews with indices c̄ > c, i.e., δd̄,c̄ = 0. The following equations are used to break the

symmetry in (3.26): ∑
∀d

δd,c+1 ≥
∑
∀d

δd,c, ∀c ∈ CL, c < |CL| (3.27)

∑
∀d

(|ΩP | − d)δd,c+1 ≥
∑
∀d

(|ΩP | − d)δd,c,∀c ∈ CL, c < |CL| (3.28)

∑
∀d

δd,c+1 ≥
∑
∀d

δd,c,∀c ∈ CT , c < |CT | (3.29)

∑
∀d

(|ΩP | − d)δd,c+1 ≥
∑
∀d

(|ΩP | − d)δd,c, ∀c ∈ CT , c < |CT | (3.30)

Constraint (3.27) states that for similar crews, we allocate the crew with the lowest index first.

Constraint (3.28) allocates the crews starting from the depots with the lowest index, and skips

depots that are not staged. Constraints (3.27) and (3.28) are also enforced to the tree crews in

(3.29) and (3.30). The feasible solutions are then reduced from four to one possible solution in this

example, where only the first matrix in (3.26) is feasible.

3.4.3 Second Stage Constraints

After selecting the depots and allocating the crews and equipment in the first stage, the crews

are assigned to repair the damaged components and the equipment are distributed to the crews in

the second stage.

3.4.3.1 Crew Assignment ∑
∀c∈CL

ALk,c,s = ULk,s, ∀k, s (3.31)

∑
∀c∈CT

ATk,c,s = UTk,s, ∀k, s (3.32)

∑
∀k

ALk,c,s ≤M
∑
∀d

δd,c,∀c ∈ CL, s (3.33)

∑
∀k

ATk,c,s ≤M
∑
∀d

δd,c, ∀c ∈ CT , s (3.34)

D̄ ≥ Dd,k(δd,c +ALk,c,s − 1),∀d, k, c ∈ CL, s (3.35)

D̄ ≥ Dd,k(δd,c +ATk,c,s − 1), ∀d, k, c ∈ CT , s (3.36)
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Equations (3.31) and (3.32) assign the line and tree crews to the damaged lines, respectively.

The binary parameter UTk,s equals 1 (0) if line k is damaged (functional). Therefore, if ULk,s equals

0, then line k will not be assigned to any crews (i.e.,
∑
∀c∈CL ALk,c,s = 0). Also, if crew c is not

staged at a depot (i.e.,
∑
∀d δd,c = 0), then crew c is not assigned to any damaged line as enforced

by (3.33) and (3.34). The big M value in (3.33) can be the maximum number of damaged lines

(max∀s(
∑
∀k ULk,s)). Constraints (3.35)-(3.36) are used to identify the distances between the damaged

components assigned to each crew and the depots. This distance is limited to D̄. If line crew c is

positioned at depot d (δd,c = 1) and is assigned to line k (ALk,c,s = 1), then D̄ ≥ Dd,k.

3.4.3.2 Working Hours

In this subsection, we estimate the working hours for each crew in order to distribute the work

assignments fairly between the crews and ensure that enough crews are present. The working hours

constraints are modeled in (3.37)-(3.40).

Hc,s =
∑
∀k

(ETLk,sA
L
k,c,s),∀c ∈ CL, s (3.37)

Hc,s =
∑
∀k

(ET Tk,sA
T
k,c,s),∀c ∈ CT , s (3.38)

LLs ≥ Hc,s,∀c ∈ CL, s (3.39)

LTs ≥ Hc,s,∀c ∈ CT , s (3.40)

The total expected working time for each line and tree crew is calculated in (3.37) and (3.38).

Constraints (3.39) and (3.40) define the expected time of the last repair. The value of LLs is greater

or equal to the largest Hc,s for the line crews, and LTs is greater or equal to the largest Hc,s for

the tree crews. Since we are minimizing the expected time of the last repair, it will take the value

max∀c(Hc,s) in each scenario. By minimizing LLs and LTs , we minimize the restoration time of the

system and ensure that we do not have a single crew or few crews in a location with many damaged

components.



www.manaraa.com

34

3.4.3.3 Equipment Assignment

∑
∀d

EDd,τ ≥
∑

∀k∈ΩCL(s)

Rk,τ,s, ∀τ, s (3.41)

∑
∀d

(EDd,τ + Ed,τ,s) ≥
∑
∀k
Rk,τ,s, ∀τ, s (3.42)

∑
∀τ

ECc,d,τ,s ≤Mδd,c, ∀d, c ∈ CL, s (3.43)

∑
∀c∈CL

ECc,d,τ,s ≤ EDd,τ + Ed,τ,s, ∀d, τ, s (3.44)

∑
∀d

ECc,d,τ,s ≥
∑
∀k

ALk,c,sRk,τ,s,∀c ∈ CL, τ, s (3.45)

{δ, AL, AT , ν} ∈ {0, 1} (3.46)

Constraint (3.41) indicates that the number of equipment available must be sufficient for repairing

all critical lines before the extreme event occurs. Constraint (3.42) states that the total equipment

that the utility has must be equal or greater than the required equipment to repair the damaged

components. Ed,τ,s identifies the additional number of equipment (unmet equipment demand) that

must be ordered in each scenario to finish the repairs. Each crew can obtain equipment from the

depot they are positioned at, as enforced by constraint (3.43). The crews must use the resources

available in the depot (3.44). Constraint (3.45) indicates that the number of resources the crew has

should be enough to repair the assigned damaged components. Finally, (3.46) defines the binary

variables. After positioning the crews and resources, the utility will be ready for the recovery

operation after the outages.

3.5 Progressive Hedging

The standard method for solving stochastic programs is to use a MILP solver, e.g., CPLEX, to

directly solve the extensive form (3.1) of the SMIP. Solving the extensive form (EF) for large-scale

problems is however computationally difficult. Rockafellar and Wets [86] developed the Progressive

Hedging (PH) algorithm for solving convex stochastic problems optimally. Watson and Woodruff
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adapted the algorithm [87] to approximately solve stochastic mixed-integer problems. The PH

algorithm decomposes the extensive form into scenario-based subproblems, by relaxing the non-

anticipativity of the first-stage variables. Hence, for |S| scenarios, the SMIP is decomposed into

|S| subproblems. The authors of [88] effectively implemented PH for solving the stochastic unit

commitment problem. The PH algorithm is described in Algorithm 1, using a penalty factor ρ and

a termination threshold ε.

Algorithm 1 The Two-Stage PH Algorithm

1: Let τ := 0
2: For all s ∈ S, compute:

3: x
(τ)
s := arg minx

{
aTx+ bTs ys : (x,ys) ∈ Qs

}
4: x̄(τ) :=

∑
s∈S Pr(s)x

(τ)
s

5: η
(τ)
s := ρ(x

(τ)
s − x̄(τ))

6: τ := τ + 1
7: For all s ∈ S compute:

8: x
(τ)
s := arg minx

{
aTx+ bTs ys + η

(τ−1)
s x+ ρ

2 ||x− x̄
(τ−1)||2 : (x,ys) ∈ Qs

}
9: x̄(τ) :=

∑
s∈S Pr(s)x

(τ)
s

10: η
(τ)
s := η

(τ−1)
s + ρ(x

(τ)
s − x̄(τ))

11: if
∑
s∈S Pr(s)||x(τ)

s − x̄(τ)|| < ε then
12: terminate
13: else
14: if τ ≥ τ1 then
15: if ντd,1 = ντd,s,∀d, s then
16: fix νd = ντd,s,∀d, s
17: end if
18: end if
19: if τ ≥ τ2 then
20: if δτd,c,1 = δτd,c,s,∀d, c, s then
21: fix δd,c = δτd,c,s,∀d, c, s
22: end if
23: end if
24: go to Step 5
25: end if

The first step initializes the iteration number τ and the individual scenarios are solved in Steps

2–3. In Step 4, the first stage solution obtained from Step 3 is aggregated. Step 5 calculates

the multiplier ηs. The multiplier is used in Step 8 to update x, where the scenarios are solved

independently in parallel. Steps 9 and 10 update the first-stage solution and the multiplier,

respectively. The program terminates once all first-stage decisions xs converge to the same x̄ in Step
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11, i.e.,
∑

s∈S Pr(s)||x(τ)
s − x̄(τ)|| < ε. The PH algorithm may experience slow convergence with large

problems that include many scenarios. A detailed analysis of PH showed that individual first-stage

variables frequently converge to specific values across all scenario subproblems [89]. Therefore, we

fix some of the first-stage variables if they converge to the same values after certain numbers of

iterations. In the SCRAP model, we fix the variable νd (depot selected) if it converges to the same

values after τ1 iterations, as shown in Steps 14–18. In Steps 19–23, the crew allocation and selection

variable δd,c is fixed after τ2 iterations if the variable converges to the same value across all scenario

subproblems. Once the variables are fixed, they are treated as parameters in the following iterations.

In this study, the values of τ1 and τ2 are set to be 5 and 20, respectively.

The stochastic programs presented in this dissertation are implemented in the Python Optimiza-

tion Modeling Objects (Pyomo) software [89]. Similarly to AMPL [90] and GAMS [91], Pyomo

allows users to formulate mathematical models to solve complex optimization problems. Pyomo

offers the PySP software package for easily modeling stochastic programming problems [92]. PySP

provides the command runph to solve stochastic programs using PH. Moreover, PySP supports

distributed optimization, therefore, the scenario subproblems in PH can be solved in parallel. We

implement the variable fixing operations using the “Watson-Woodruff” (WW) plugin in PySP.

3.6 Simulation and Results

The preallocation model is simulated on the modified IEEE 123-bus distribution feeder [76, 93].

The size of the IEEE 123-bus feeder is scaled up, as shown in Fig. 3.5. The modified network, shown

in Fig. 3.6, includes 4 dispatchable DGs, 18 new switches, 5 PVs and 2 battery energy storage

devices. Note that Fig. 3.6 does not reflect the actual x- and y-coordinates. The 4 DGs are rated at

300 kW and 250 kVAr. The PV at bus 62 is rated at 900 kW and the other PVs are rated at 50

kW. The battery systems at bus 2 and 62 are rated at 50 kW/132 kWh and 500 kW/ 2100 kWh,

respectively. Additional details about the network can be found in [93].

We assume that a category 3 hurricane is forecasted to make its way towards the test system.

Monte Carlo sampling is used to generate 100 damage scenarios with equal probability. First,
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Figure 3.5 Modified IEEE 123-bus distribution feeder and location of depots
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lognormal distribution with µ = 4.638 and σ = 0.039 [79] is used to generate 100 scenarios of

possible wind speeds at landfall. Then, the models presented in Section 3.3 are used to evaluate the

impact of the extreme event. The number of scenarios are reduced to 30 using the tool SCENRED2

in the General Algebraic Modeling System (GAMS) [91] to reduce the computational complexity.

The simulation data used in equations (3.5)–(3.10) are listed in Table 3.2.

Table 3.2 Simulation data for the fragility models

Model Parameter Value Ref.

Pole failure
ap 0.0001

[81]
bp 0.0421

Conductor failure

G1 1

[83]
G2 0.83

G3 1

Cf 1.2

Lcl 45.72 m

[94]Dc
l 0.0183 m

F forcel 62.8 kN

{ah, bh, ch} {-2.752, 0.680, 0.663}
[84]

Swl 0–1

kl 0.57–1.43 [95]

DH 0.15 m [82]

After generating the damage scenarios, the PF problem (3.15) is solved for each scenario to find

the critical lines to be repaired. Then, the SMIP model presented in Section 3.4 is used to model the

preallocation problem. It is assumed that there are 5 potential staging areas, the location of each

depot is shown in Fig. 3.5. We set the maximum distance between the staged crews and damaged

components to be 16 km (D̄ =16 km) in this simulation. Depot 1 is assumed to be the main location

of the utility and must be staged (ν1 = 1). Depot 1 has 5 line crews, 3 tree crews, and a stockpile of

25 poles (10 for 3-phase lines and 15 for 1- and 2-phase lines), 4 km of conductor, 8 single-phase

transformers, and 3 three-phase transformers. The utility can obtain additional resources based on

the results of the SCRAP model. The data for the costs used in the SCRAP model are presented in

Table 3.3 [26, 96, 97, 98]. The penalty costs for the unmet equipment demand is assumed to be 10

times the actual cost of the equipment. As for the penalty cost on the restoration time, we estimate
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the per hour outage cost $/h. For the IEEE-123 bus system considered in this study, the average

daily load is 2772.75 kW. Using the average per hour cost [99] of $2/kWh for regular loads and

$16/kWh for critical loads, the estimated per hour cost is found to be $14610.5/h. We set PR to

equal half of the estimated per hour cost so that the penalty cost is divided between line repairs

and tree removal in (3.17).

Table 3.3 Simulation data for SCRAP on the IEEE 123-bus feeder

Parameter Value

Depot supply capacity (unit) CEd = {600,400,400,250,250}
Depot crew capacity (crew) CHd = {8,7,7,5,5}

Capacity required (unit) CRτ ={10,8,5,4,6}
Staging areas costs ($) PDd = {0,170K,170K,90K,90K}

Equipment costs ($/unit∗) PEIτ = {2K,1.2K,2.5K,1.2K,3.3K}
Labor cost ($/crew) Line crew: 225, Tree crew: 120

Transportation costs ($/tkm) 0.098

Contracting costs $4285/crew

*For the conductor, 1km = 1 unit.

3.6.1 Preparation

The SCRAP model is solved using Pyomo with IBM’s CPLEX 12.6 mixed-integer solver on

a high-performance computing system. The simulation is performed on Iowa State University’s

Condo cluster, whose individual blades consist of two 2.6 GHz 8-Core Intel E5-2640 v3 processors

and 128GB of RAM. Table 3.4 presents the results of the preparation problem using SCRAP and

PH with 30 scenarios and 1 scenario, which we refer to as deterministic allocation (DA). The single

scenario for DA is obtained by reducing the number of scenarios to 1 using SCENRED2. Moreover,

the robust stochastic optimization (RSO) method presented in [20] is used to solve the preparation

problem. The staging sites and the number of crews are found to be the same for both stochastic

and deterministic solutions. However, SCRAP invested around $30,000 more in equipment. The

deterministic solution is biased towards a single scenario and did not consider extreme cases where

the required number of equipment is high. On the other hand, RSO favors a solution that would
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perform better with worst-case scenarios. RSO invested around $40,000 more than SCRAP on

equipment. However, this can lead to over-preparation and overinvestment.

The results of the SCRAP model indicate that Depot 4 should be staged in preparation to

the weather event in support to the main location (Depot 1). Five new external line crews are

contracted with one positioned at Depot 1 and four positioned at Depot 4. In addition, one tree

crew is transferred from Depot 1 to Depot 4. Six 3-phase poles (type 1) are ordered to Depot 4 and

fourteen type 2 poles are ordered, one to Depot 1 and thirteen to Depot 4. Also, two single-phase

transformers are transferred to Depot 4 from Depot 1. Finally, around 200 meters of conductor is

transferred from Depot 1 to Depot 4, and approximately 1800 meters of conductor is ordered to

Depot 4.

Table 3.4 Pre-event Preparation Results

SCRAP DA RSO

Staged Depots 1 4 1 4 1 4

Line Crews 6 4 6 4 6 4

Tree Crews 2 1 2 1 2 1

Equipment

1 10 6 10 0 15 8

2 16 13 13 6 26 15

3 3 0 3 0 3 0

4 6 2 7 1 6 3

5 3.8 km 2 km 2.5 km 1.5 km 5 km 3 km

Costs $146,766 $117,443 $183,371

To show the importance of considering uncertainty in the problem, we calculate the expected

value of perfect information (EVPI)). EVPI is the difference between the wait-and-see (WS) and

the stochastic solutions. It represents the value of knowing the future with certainty. WS is the

expected value of reacting to random variables with perfect foresight. It is obtained by calculating

the means of all deterministic solutions of the scenarios. WS provides a lower bound for the

objective value and cannot be obtained in practice. As for evaluating the performance of the

deterministic solution across different scenarios, we set the first-stage variables obtained from DA as

fixed parameters and solve the stochastic problem. Let ζ = F(x, ξ) be the stochastic programming

problem with first-stage variables x and random variables ξ. If xDA is the first-stage solution
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obtained by solving the deterministic problem, then the expected value of the deterministic solution

(ED) is ζED = F(xDA, ξ). The same approach is used to calculate the objective value of RSO. From

Table 3.5, the stochastic solution from SCRAP with PH is less than ED, which is expected since

SCRAP considers the variability of the extreme event outcome unlike the deterministic solution.

The difference between PH and ED is $163,017, which is around 80% of the difference between ED

and WS. This indicates that the stochastic model leads to a better preparation strategy by acquiring

and positioning enough equipment. Solving the two-stage stochastic problem is more beneficial

than solving a deterministic problem. PH achieved a solution only 0.36% less than EF with a

considerably lower computation time. RSO achieved a solution that outperforms the deterministic

one, however, the EVPI for RSO is $95,513 and $38,415 for SCRAP-PH. In addition, RSO requires

more computation time when compared to SCRAP-PH.

Table 3.5 Performance of the Stochastic Program

Method Objective Value Computation Time EVPI

WS $513,170 N/A N/A

SCRAP-EF $549,554 300 min $36,384

SCRAP-PH $551,585 106 min $38,415

RSO $608,683 335 min $95,513

ED $714,602 2 min $201,432

3.6.2 Stability Test

The stability test in [100] is used in this study to check the sensitivity of solution stability to

the number of scenarios. The idea of the test is to solve the stochastic problem with multiple

independent sets of scenarios and compare the objective values. The model is stable if the objective

values are approximately equal [100]. We generate 8 sets of scenarios, each set includes 30 to

100 scenarios. The simulation results are shown in Fig. 3.7, which shows that the variation of

the objective value is small. Therefore, the method is stable and 30 scenarios are adequate for

representing the uncertainties.
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Figure 3.7 Sensitivity analysis of optimal objective value versus the number of scenarios.

3.6.3 Restoration

After the event hits the system, it is up to the utility to dispatch the crews and manage the

equipment. The efficiency of this process depends on the location of the crews and the amount

of stored equipment. To assess the devised preparation plan, we solve the repair and restoration

problem [76]. A new random scenario is generated on the IEEE 123-bus system, with crews and

equipment allocated according to the results in Table 3.4. In the generated scenario, 13 three-phase

poles, 18 single-phase poles, 2 single-phase transformers, and 4343.4 meter of conductor are damaged.

The method presented in [76] (Chapter 4) is used to dispatch the crews and operate the network to

restore energy to customers as fast as possible. Four preparation methods are tested: 1- SCRAP; 2-

RSO; 3- DA; 4- without preparation (the utility starts with its crews and equipment positioned at

Depot 1). The results are shown in Table 3.6 and Fig. 3.8. The “+” sign in Table 3.6 indicates a

surplus of equipment (number of available equipment is higher than the amount required) and “-”

indicates a shortage of equipment. Both SCRAP and RSO over prepare with a large surplus of 11

single-phase poles for SCRAP and 23 single-phase and 10 three-phase poles for RSO. However, the

restoration process is faster with 80 MWh served in the first 48 hours for both methods. Without

preparation and DA have a shortage of 3 three-phase poles and 0.34 km of conductor. Moreover,

without preparation, there is a shortage of 3 single-phase poles. We assume that the equipment
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required to finish repairs can be obtained 12 hours after the event. With 10 line crews and 3 tree

crews, the system can be completely restored within 48 hours (27 and 30 hours with SCRAP/RSO

and DA, respectively). On the other hand, it takes more than 48 hours to restore the system for

5 line crews and 3 tree crews. The percentage of load served comparing the three preparation

strategies is shown in Fig. 3.8, where SCRAP has the best performance.

Table 3.6 Repair and Restoration Performance After The Event

Preparation Equipment Load served (kWh)

SCRAP {+3,+11,+3,+6,+0.32 km} 80,136 kWh

RSO {+10,+23,+3,+7,+3.7 km} 80,136 kWh

DA {-3,+1,+3,+6,-0.34 km} 77,448 kWh

W/O Preparation {-3,-3,+3,+6,-0.34 km} 46,667 kWh

“-”: shortage; “+”: surplus; the load served is for the first 48 hours.

Equipment: {poles for 3-phase lines, poles for single-phase lines, 3-

phase transformers, single-phase transformers, conductor}.
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Figure 3.8 Post-event percentage of load served

3.7 Summary

In this chapter, a new study for disaster preparation considering crews and equipment allocation

is presented. The study starts with analyzing the fragility of distribution networks to extreme
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events in order to estimate their impacts on the network. Several outcome scenarios are generated

providing information on the number of equipment required, estimated repair times, and critical

lines. A two-stage stochastic mathematical model is developed to select staging locations, and

allocate crews and equipment. A study case is presented on the IEEE 123-bus system where the

performance of the proposed model is tested. The results demonstrate the effectiveness of the

proposed approach for both meeting the equipment demand and post-event recovery operation.

By using an effective preparation procedure, we can ensure that enough equipment is present for

repairing the damaged components in the network and facilitate a faster restoration process.
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CHAPTER 4. DISTRIBUTION NETWORK REPAIR AND RESTORATION

4.1 Overview

This chapter proposes an optimization strategy to assist utility operators to recover power

distribution systems after large outages. Specifically, a MILP model is developed for co-optimizing

crews, resources, and network operations in Section 4.2. The MILP model coordinates damage

isolation, network reconfiguration, distributed generator redispatch, PV systems operations, and

crew/resource logistics. We consider two different types of crews, namely, line crews for damage

repair and tree crews for obstacle removal. Furthermore, a new algorithm is developed in Section

4.3 for solving DSRRP. The algorithm starts by assigning the crews to the damaged components in

the first stage. In the second stage, DSRRP is solved with the crews dispatched to the assigned

components from the first stage. In the third stage, a neighborhood search approach [101] is used

to iteratively improve the routing decisions obtained from stage two. The simulation and results

for validating the proposed method are presented in Section 4.4. Currently, utilities schedule the

repairs using a list of predefined restoration priorities based on previous experiences, and network

operation and repair scheduling are split into two different processes. This kind of approach does not

capture the interdependence nature of the crew routing and network operation problems. Utilities

commonly rely on the experiences of the operators. Our aim is to provide utilities with a better

distribution system restoration decision-making process for coordinating crew scheduling, resource

logistics, and network operations.

4.2 Mathematical Formulation

During extreme events, outage reports are received directly from customers using an interactive

voice response (IVR) system. The customer information system collects the information and

sends it to the outage management system (OMS). Additional information on the system status
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is also obtained from advanced metering infrastructure (AMI) and the supervisory control and

data acquisition (SCADA) system, which confirms the occurrence of outages or restorations using

measurements from field devices. Using the collected data, the OMS can estimate the locations of the

outages, and then damage assessors are dispatched to locate the damaged components and estimate

the required resources and repair time. Now that the location of the damaged components and the

status of the system are known, the DSRRP model is solved to obtain the repair and restoration

solution. The crew schedule is sent to the work management system (WMS), which communicates

the tasks to the crews. The restoration plan and operations are sent to the distribution management

system (DMS) and the system operator to confidently control the switches and DGs. The proposed

model can be implemented inside the OMS. Fig. 4.1 shows an example on how to integrate the

proposed method in the utilities’ tools.
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AMI: Advanced Metering Infrastructure

AMR: Automated Meter Reading

CIS: Customer Information System 

IVR: Integrated Voice Response

SCADA: Supervisory Control and Data Acquisition 

WMS: Work Management System 

Figure 4.1 Integration of the DSRRP model into the OMS.

In this study, we assume that the assessors have located the damaged lines, and estimated the

repair time and required resources. This section presents the DSRRP model. The nomenclature is

given in Table 4.1.
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Table 4.1 Nomenclature for the DSRRP model

Sets and Indices

m/n Indices for damaged components and depots

c, τ, d Index for crews, resources and depots

i/j Indices for buses

k Index for distribution line connecting i and j

t, ϕ Index for time and phase number

CL, CT Set of line and tree crews

N Set of damaged components and the depot

N(c) Set of components assigned to crew c

ΩB ,ΩP Set of buses and depots

ΩDL,ΩDT Set of damaged lines and lines damaged by trees.

ΩES ,ΩPV Set of BESSs and PVs

ΩG,ΩSub Set of buses with dispatchable generators and substations

ΩK(.,i) Set of lines with bus i as the to bus

ΩK(i,.) Set of lines with bus i as the from bus

ΩK(l) Set of lines in loop l

ΩSW Set of lines with switches

Parameters

CapRτ The capacity required to carry resource τ

CapCc The maximum capacity of crew c

E/E
S

i The minimum/maximum energy state of BESS i

Iri,t Solar irradiance at bus i and time t

Rm,τ The number of type τ resources required to repair damaged component m

EDd,τ The number of type τ resources that are located in depot d

ρDi , ρ
SW The cost of shedding the load at bus i and cost of switching

P/QDi,ϕ,t Diversified active/reactive demand at bus i, phase ϕ and time t

P/QUi,ϕ,t Undiversified active/reactive demand at bus i and phase ϕ

S, P̄PVi The kVA and kW rating of PV i

QCi,ϕ Reactive power for capacitor bank at bus i

SESi The kVA rating of BESS i

ETm,c The estimated time needed to repair (clear the trees at) damaged component m for line (tree)
crew c

trm,n Travel time between m and n
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Table 4.1 (Continued)

φ0c/φ
1
c Start/End location of crew c

Zk The impedance matrix of line k

pk Vector with binary entries for representing the phases of line k

ak Vector representing the ratio between the primary and secondary voltages for each phase of the
voltage regulator on line k

δd,c Binary parameter equals 1 if crew c is positioned in depot d

ηc, ηd,∆t Charging and discharging efficiency, and the time step duration

Decision Variables

A
L/T
m,c Binary variable equal to 1 if component m is assigned to line/tree crew c

ECc,d,τ Number of type τ resources that crew c obtains from depot d

γk,t Binary variable indicates whether switch k is operated in time t

Sk A vector representing the apparent power of each phase for line k at time t

Ui,t A vector representing the squared voltage magnitude of each phase for bus i at time t

Xi,t Binary variable equal to 0 if bus i is in an outage area at time t

CEc,m,τ The number of type τ resources that crew c has before repairing damaged component m

ESi,t Energy state of BESS i at time t

αm,c Arrival time of crew c at damaged component m

fm,t Binary variable equal to 1 if damaged component m is repaired at time t

LL,LT The expected times of the last repair conducted by the line and tree crews

P
ch/dch
i,ϕ,t Active power charge/discharge of the BESS at bus i

P/QLi,ϕ,t Active/reactive load supplied at bus i, phase ϕ and time t

P/QPVi,ϕ,t The active/reactive power output of the PV at bus i

P/QGi,ϕ,t Active/reactive power generated by DG at bus i, phase ϕ and time t

P/QKk,ϕ,t Active/reactive power flowing on line k, phase ϕ and time t

Pc,d A positive penalty term for the excess capacity that crew c requires from depot d

t̄r Maximum travel time for the crews

uk,t Binary variables indicating the status of the line k at time t

uCi,t Binary variable equals 1 if capacitor bank at bus i is connected

uESi,t Binary variable equals 1 if the BESS is charging and 0 for discharging

vSi,t, v
f
k,t Virtual power generated at bus i and the virtual flow on line k

xm,n,c Binary variable indicating whether crew c moves from damaged components m to n.

yi,t Connection status of the load at bus i and time t

zd,c Binary variable equal to 1 if crew c require additional resources from depot d
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4.2.1 Objective

In order to limit the number of switching operations, we include the cost of switching in the

objective function. Therefore, the cost of switching is combined with the cost of load shedding as

follows.

min
∑
∀t

(∑
∀ϕ

∑
∀i

(1− yi,t)ρDi PDi,ϕ,t + ρSW
∑

k∈ΩSW

γk,t
)

(4.1)

The first term in objective (4.1) minimizes the cost of load shedding, while the second term

minimizes the cost of operating the switches. The base load shedding cost is assumed to be $14/kWh

[7], and the base cost is multiplied by the load priority to obtain ρDi . The switch operation cost is

set to be $8/time [102].

4.2.2 Distribution Network Operation

4.2.2.1 Cold-load Pickup

After an extended period of outage, the effect of cold load pickup (CLPU) may happen, which

is caused by the loss of diversity and simultaneous operation of thermostatically controlled loads.

As depicted in Fig. 4.2, the normal steady-state load consumption is defined as the diversified load,

and undiversified load is the startup load consumption upon restoration. The time when the load

experiences an outage is t0, t1 is the time when the load is restored, and t3 is the time when the

load returns to normal condition. The typical behavior of CLPU can be represented using a delayed

exponentially decaying function [47], which is shown in Fig. 4.2, where t2 − t1 is the exponential

decay delay, and t3 − t1 is the CLPU duration. This exponential function can be approximated

using a linear combination of multiple blocks. In this study, we employ two blocks to represent

CLPU as suggested in [47]. The first block is for the undiversified load PU and the second for the

diversified load PD (i.e., the steady-state load consumption) as shown in Fig. 4.2.

The use of two blocks decreases the computational burden imposed by nonlinear characteristics

of CLPU and provides a conservative approach to guarantee the supply-load balance. For a time
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Figure 4.2 CLPU condition as a delayed exponential model, and the shaded areas represent

the two-block model.

horizon T and time step ∆t, the CLPU curve is sampled as shown in Fig. 4.3, where λ is the number

of time steps required for the load to return to normal condition. The value of λ equals the CLPU

duration divided by the time step. The CLPU constraint for active power can be formulated as

follows:

PLi,ϕ,t = yi,tP
D
i,ϕ,t + (yi,t − yi,max(t−λ,0))P

U
i,ϕ,t, ∀i, ϕ, t (4.2)

where yi,0 is the initial state of load i immediately after an outage event; i.e., yi,0 = 1 and

PLi,ϕ,0 = PDi,ϕ,0 if the load is not affected by the outage. If a load goes from a de-energized state to

an energized state at time step t = h (yi,h−1 = 0 and yi,h = 1), it will return to normal condition

at time step h+ λ, as yi,h − yi,max(h+λ−λ,0) = 0. Before time step h+ λ, PUi,ϕ,t is added to PDi,ϕ,t to

represent the undiversified load. The function max(t− λ, 0), is used to avoid negative values. We

assume that the duration of the CLPU decaying process is one hour in the simulation [47]. Moreover,

the study in [103] showed that the total load at pickup time can be up to 200% of the steady state

value, thus, PUi,ϕ,t is set to be equal to PDi,ϕ,t. Similarly, the CLPU constraint for reactive power [104]

is formulated in (4.3). Also, we impose that once a load is served it cannot be shed using constraint

(4.4).

QLi,ϕ,t = yi,tQ
D
i,ϕ,t + (yi,t − yi,max(t−λ,0))Q

U
i,ϕ,t, ∀i, ϕ, t (4.3)
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yi,t+1 ≥ yi,t , ∀i, t (4.4)

Figure 4.3 Two-blocks CLPU condition as a delayed exponential model, with time step ∆t.

4.2.2.2 Unbalanced Power Flow Equations

0 ≤ PGi,ϕ,t ≤ P
Gmax
i , ∀i, ϕ, t (4.5)

0 ≤ QGi,ϕ,t ≤ Q
Gmax
i , ∀i, ϕ, t (4.6)

− uk,tpk,ϕPKmax
k ≤ PKk,ϕ,t ≤ uk,tpk,ϕP

Kmax
k , ∀k, ϕ, t (4.7)

− uk,tpk,ϕQKmax
k ≤ QKk,ϕ,t ≤ uk,tpk,ϕQ

Kmax
k , ∀k, ϕ, t (4.8)

∑
∀k∈K(.,i)

PKk,ϕ,t + PGi,ϕ,t + PPVi,ϕ,t + P dchi,ϕ,t =
∑

∀k∈K(i,.)

PKk,ϕ,t + PLi,ϕ,t + P chi,ϕ,t, ∀i, ϕ, t (4.9)

∑
∀k∈K(.,i)

QKk,ϕ,t +QGi,ϕ,t +QPVi,ϕ,t +QESi,ϕ,t + uCi,tQ
C
i,ϕ =

∑
∀k∈K(i,.)

QKk,ϕ,t +QLi,ϕ,t,∀i, ϕ, t (4.10)

Uj,t −Ui,t + Z̄kS
∗
k + Z̄∗kSk ≤ (2− uk,t − pk)M, ∀k ∈ ΩL\ΩV , t (4.11)

Uj,t −Ui,t + Z̄kS
∗
k + Z̄∗kSk ≥ −(2− uk,t − pk)M,∀k ∈ ΩL\ΩV , t (4.12)

Constraints (4.5)–(4.8) define the active and reactive power limits of the DGs and lines. The

limits on the line-flow constraints are multiplied by uk,t so that if a line is damaged or a switch

is opened, there will be no power flowing on it. Constraints (4.9)–(4.10) are 3-phase active and

reactive power node balance constraints. Binary variable uCi,t determines the connection status of
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the capacitor bank. Constraints (4.11)–(4.12) represent Kirchhoff’s voltage law [105]. For each line

i to j, Kirchhoff voltage law is applied as follows:

Vj = Vi −ZkIk (4.13)

where Vi = [V a
i , V

b
i , V

c
i ]T ∈ C3×1 is the 3-phase complex voltage of bus i, Ik = [Iak , I

b
k, I

c
k]
T ∈ C3×1

is the 3-phase current, and Zk ∈ C3×3 is the impedance matrix of line k that connects buses i and

j. Let � and � be the element wise multiplication and division, the current can then be calculated

as follows:

Ik = S∗k � V ∗i (4.14)

where Sk is the 3-phase apparent power flowing from bus i to j. We assume that the line losses is

small compared to the power flow. By combining (4.13) and (4.14), and multiplying by the complex

conjugate of each side, we can obtain the following equation:

Vj � V ∗j = Vi � V ∗i −Zk(S∗k � V ∗i )� V ∗i −Z∗k(Sk � Vi)� Vi + ck(Sk, Vi, Zk) (4.15)

where ck(Sk, Vi, Zk) is a higher-order term which can be neglected if the line losses is small

compared to power flow. Equation (4.15) is expanded as follows:


(V a
j )2

(V b
j )2

(V c
j )2

 =


(V a
i )2

(V b
i )2

(V c
i )2

−

Zaak (Sak

V a
i
V a
i

)∗ + Zabk (Sbk
V a
i

V b
i

)∗ + Zack (Sck
V a
i
V c
i

)∗

Zbak (Sak
V b
i
V a
i

)∗ + Zbbk (Sbk
V b
i

V b
i

)∗ + Zbck (Sck
V b
i
V c
i

)∗

Zcak (Sak
V c
i
V a
i

)∗ + Zcbk (Sbk
V c
i

V b
i

)∗ + Zcck (Sck
V c
i
V c
i

)∗



−


(Zaak )∗Sak

V a
i
V a
i

+ (Zabk )∗Sbk
V a
i

V b
i

+ (Zack )∗Sck
V a
i
V c
i

(Zbak )∗Sak
V b
i
V a
i

+ (Zbbk )∗Sbk
V b
i

V b
i

+ (Zbck )∗Sck
V b
i
V c
i

(Zcak )∗Sak
V c
i
V a
i

+ (Zcbk )∗Sbk
V c
i

V b
i

+ (Zcck )∗Sck
V c
i
V c
i

 (4.16)

Define Ui for each bus as Ui = [|V a
i |2, |V b

i |2, |V c
i |2]T , and by assuming that the voltages are

nearly balanced (V a
i /V

b
i ≈ V b

i /V
c
i ≈ V c

i /V
a
i ≈ ej2π/3), the following equation is obtained:

Uj = Ui − Z̄kS∗k − Z̄∗kSk (4.17)

where Z̄k = A�Zk and A is defined as follows:
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A =


1 e−j2π/3 ej2π/3

ej2π/3 1 e−j2π/3

e−j2π/3 ej2π/3 1


The big M method is used to decouple the voltages between lines that are disconnected or

damaged in (4.11) and (4.12). Also, if line k(i, j) is a two-phase line (e.g., phases a and c), then

the voltage constraint is only applied to these two phases, which is realized by including pk. The

vector pk ∈ {0, 1}3×1 represents the phases of line k; e.g., for line k with phases a, c, pk = [1, 0, 1].

The per-phase form of (4.11) and (4.12) is detailed in (4.18)-(4.23), where R̄ and X̄ are the real

(resistance) and imaginary (reactance) parts of Z̄.

Ui,a,t − Uj,a,t − 2(R̄aak P
K
k,a,t + R̄abk P

K
k,b,t + R̄ack P

K
k,c,t+

X̄aa
k QKk,a,t + X̄ab

k Q
K
k,b,t + X̄ac

k Q
K
k,c,t) ≤M(2− uk,t − pk,a),∀k, t (4.18)

Ui,a,t − Uj,a,t − 2(R̄aak P
K
k,a,t + R̄abk P

K
k,b,t + R̄ack P

K
k,c,t+

X̄aa
k QKk,a,t + X̄ab

k Q
K
k,b,t + X̄ac

k Q
K
k,c,t) ≥ −M(2− uk,t − pk,a),∀k, t (4.19)

Ui,b,t − Uj,b,t − 2(R̄bak P
K
k,a,t + R̄bbk P

K
k,b,t + R̄bck P

K
k,c,t+

X̄ba
k Q

K
k,a,t + X̄bb

k Q
K
k,b,t + X̄bc

k Q
K
k,c,t) ≤M(2− uk,t − pk,b),∀k, t (4.20)

Ui,b,t − Uj,b,t − 2(R̄bak P
K
k,a,t + R̄bbk P

K
k,b,t + R̄bck P

K
k,c,t+

X̄ba
k Q

K
k,a,t + X̄bb

k Q
K
k,b,t + X̄bc

k Q
K
k,c,t) ≥ −M(2− uk,t − pk,b), ∀k, t (4.21)

Ui,c,t − Uj,c,t − 2(R̄cak P
K
k,a,t + R̄cbk P

K
k,b,t + R̄cck P

K
k,c,t+

X̄ca
k Q

K
k,a,t + X̄cb

k Q
K
k,b,t + X̄cc

k Q
K
k,c,t) ≤M(2− uk,t − pk,c), ∀k, t (4.22)
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Ui,c,t − Uj,c,t − 2(R̄cak P
K
k,a,t + R̄cbk P

K
k,b,t + R̄cck P

K
k,c,t+

X̄ca
k Q

K
k,a,t + X̄cb

k Q
K
k,b,t + X̄cc

k Q
K
k,c,t) ≥ −M(2− uk,t − pk,c),∀k, t (4.23)

4.2.2.3 Voltage Regulators

Voltage regulators are used by utilities to maintain the voltage in the system within specific

limits. The voltage regulators are capable of raising or lowering the voltage by ±10%. This is

achieved by controlling the tap position of the voltage regulation transformers by increments of

0.625%. The ratio of the voltage regulator transformer is given by (1 + 0.00625Tapk,ϕ,t), where

Tapk,ϕ,t ∈ {−16,−15, ..., 16} is the tap position. If Ui is the primary voltage and Uj is the secondary

voltage of voltage regulator k, then:

Uj = (1 + 0.00625Tapk,ϕ,t)
2 Ui (4.24)

However, equation (4.24) is nonlinear. To linearize (4.24), we first define all possible ratios between

the primary and secondary squared voltages as rv ∈ R33×1 = [0.81, 0.8213, ..., 1.21]. Then, binary

variable tvk,r,ϕ,t ∈ {0, 1}33 is used to indicate the tap position of the voltage regulator. The

mathematical model for the voltage regulators is then formulated as follows:

−M(1− tvk,p,ϕ,t) + rvpUi,ϕ,t ≤Uj,ϕ,t ≤

rvpUi,ϕ,t +M(1− tvk,p,ϕ,t), ∀k ∈ ΩV , ϕ, t, p ∈ {1...33}
(4.25)

33∑
p=1

tvk,p,ϕ,t = 1, ∀k ∈ ΩV , ϕ, t (4.26)

Constraints (4.25) models the relationship between the voltage magnitudes on both sides for a

3-phase voltage regulator, with i as the primary side and j as the secondary side. If tvk,p,ϕ,t = 0, then

(4.25) does not impose any relationship between the two voltages. On the other hand, if tvk,p,ϕ,t = 1,

the constraint becomes Uj,ϕ,t = rvpUi,ϕ,t. Constraint (4.26) states that the tap can be in one position.
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Additionally, we can impose a limit on the number of tap changes allowed for the regulators as

follows:

− tvmax ≤
33∑
p=1

rvp(tvk,p,ϕ,t − tvk,p,ϕ,t−1) ≤ tvmax,∀k ∈ ΩV , ϕ, t (4.27)

where tvmax is the maximum number of tap changes for each regulator per hour. Constraints (4.25)

and (4.26) represent an exact linaerization of (4.24), however, it does impose some computational

complexity. Therefore, if we assume that the tap setting is continuous [106], then equation (4.24)

can be approximated using the following constraint:

(0.9)2Ui,ϕ,t ≤ Uj,ϕ,t ≤ (1.1)2Ui,ϕ,t, ∀k ∈ ΩV , ϕ, t (4.28)

Constraint (4.28) forces the voltage on the secondary side of the voltage regulator to be within

±10% of the primary side.

4.2.2.4 Reconfiguration and Fault Isolation

Automatic sectionalizing switches can reduce the number of affected customers during an outage.

The switches isolate the faulted parts of the network so that the healthy parts of the network can

be supplied. The automatic operation of the sectionalizing switches is coordinated with the circuit

breakers or reclosers which interrupts the high current that results from a fault. Note that the fault

considered in this dissertation is a permanent fault due to failure of a component. Consider the

network shown in Fig. 4.4, the substation at bus 1 is supplying the system when a permanent fault

occurs at line 5–6. The circuit breaker (CB) between 1–2 opens to interrupt the fault current. After

that, the sectionalizing switches at lines 3–4 and 6–7 are opened to isolate the fault. Finally, the

CBs are closed to operate the healthy part of the network. The purpose of the developed model is

to find the network shown in Step 3 (in Fig. 4.4) after a fault occurs. The following constraints are

used to reconfigure the distribution network and isolate the failed lines [107]:

Xi,tUmin ≤ Ui,t ≤ Xi,tUmax , ∀i, t (4.29)

2uk,t ≥ Xi,t + Xj,t,∀k ∈ ΩDL, t (4.30)
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uk,t = 1, ∀k 6∈ {ΩSW ∪ ΩDL}, t (4.31)

γk,t ≥ uk,t − uk,t−1, ∀k ∈ ΩSW , t (4.32)

γk,t ≥ uk,t−1 − uk,t, ∀k ∈ ΩSW , t (4.33)∑
k∈ΩK(l)

uk,t ≤ |ΩK(l)| − 1,∀l, t (4.34)

Figure 4.4 Distribution system switch operation for fault isolation.

Constraint (4.29) ensures that the voltage is within a specified limit, and is set to equal to

0 if the bus is in an on-outage area. Constraint (4.30) sets the values of Xi and Xj to be 0 if

the line is damaged, therefore, the voltages on the buses between damaged lines are forced to be

0 using constraint (4.29). Subsequently, the zero voltage propagates on the rest of the network

through constraints (4.11)–(4.26) until a circuit breaker or sectionalizer stops the propagation. If

the voltages on two connected buses are zero, then the power flow is forced to be zero through

constraints (4.11) and (4.12)Constraint (4.31) defines the default status of the lines that are not

damaged or not switchable. Constraint (4.32)–(4.33) are used in order to limit the number of

switching operations. We define a variable γk,t which is equal to 1 if the line switches its status
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from 0 (off) to 1 (on), or 1 (on) to 0 (off). This variable is included in the objective to minimize the

number of switching operation. Constraint (4.34) is the radiality constraint. Radiality is enforced

by introducing constraints for ensuring that at least one of the lines of each possible loop in the

network is open [108]. A depth-first search method is used to identify the possible loops in the

network and the lines associated with them [109]. Alternatively, the radiality constraints can be

represented by (4.34a)-(4.34d) based on the spanning tree approach [53].

0 ≤ βi,j,t ≤ 1, ∀i, j ∈ ΩB, t (4.34a)

βi,j,t + βj,i,t = uk,t,s, ∀k, t (4.34b)

βi,j,t = 0, ∀i ∈ ΩB, j ∈ ΩSub, t (4.34c)∑
∀i∈ΩB

βi,j,t ≤ 1, ∀j ∈ ΩB, t (4.34d)

Two variables βi,j,t and βj,i,t are defined to model the spanning tree. For a radial network, each

bus cannot be connected to more than one parent bus and the number of lines equals the number of

buses other than the root bus. Constraint (4.34b) relates the connection status of the line and the

spanning tree variables βi,j,t and βj,i,t. If the distribution line is connected, then either βi,j,t or βj,i,t

must equal one. Constraint (4.34c) designates substations as root buses and indicates that they do

not have parent buses. Constraint (4.34d) requires that every bus does not have more than one

parent bus. The spanning tree constraints guarantee that the number of buses in a spanning tree,

other than the root, equals the number of lines [53]. In this dissertation, we use constraint (4.34) to

ensure the radiality as the spanning tree constraints in (4.34a)–(4.34d) will add |ΩB| × |ΩB| × |T |

variables.

4.2.3 PV Systems

In this study, we consider three types of PV systems:

� Type 1: on-grid (grid-tied) PV (ΩG
PV ): during an outage, the PV is switched off. This type of

PVs is the most commonly used one especially for residential customers [110]. The on-grid

system uses a standard grid-tied inverter and does not have any battery storage.
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� Type 2: hybrid on-grid/off-grid PV + BESS (ΩH
PV ): this system is an on-grid system that can

disconnect from the grid after an outage and uses battery backup supply.

� Type 3: grid-forming PV + BESS (ΩC
PV ): this system is an on-grid system that can support

a large section of the network [111]. After an outage, the PV and battery system can provide

energy to the healthy parts of the network.

4.2.3.1 PV active and reactive power

The active and reactive powers of a PV depend on the rating of the solar cell and the solar

irradiance. The active output power from the PVs is determined using constraints (4.35) and (4.36).

The PV inverters can provide reactive power support, which is constrained by (4.37) and (4.38)

[112].

PPVi,ϕ,t =
Iri,t

(1000W/m2)
P
PV
i ,∀i ∈ ΩPV \ΩG

PV , ϕ, t (4.35)

PPVi,ϕ,t = Xi,t
Iri,t

(1000W/m2)
P
PV
i , ∀i ∈ ΩG

PV , ϕ, t (4.36)

|QPVi,ϕ,t| ≤
√

(SPVi )2 − (P̂PVi,t )2, ∀i ∈ ΩPV \ΩG
PV , ϕ, t (4.37)

|QPVi,ϕ,t| ≤ Xi,t
√

(SPVi )2 − (P̂PVi,t )2, ∀i ∈ ΩG
PV , ϕ, t (4.38)

where P̂PVi,t =
Iri,t

(1000W/m2)
P
PV
i

PVs of types ΩG
PV and ΩH

PV are able to disconnect from the grid and serve the on-site load.

On the other hand, on-grid PVs are disconnected and the on-site load is not served by the PVs

during an outage, therefore, the right-hand side in (4.36) and (4.38) are multiplied by Xi. Note that

|f(x)| ≤ x is equivalent to −x ≤ f(x) ≤ x.

4.2.3.2 PV connectivity

In this dissertation, we assume that the network can be restored using the grid-forming sources

in ΩC
PV ∪ ΩG ∪ ΩSub. A PV of type ΩG

PV or ΩH
PV can connect to the grid only after the PV bus is
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energized. Consider the network shown in Fig. 4.5. Due to line damage, the network is divided

into four islands. Island A can be energized by the substation, therefore, the PV at bus 10 can be

connected with the grid. Island B must be isolated because of the damaged line. Island C does

not have any grid-forming generators; hence, it will not be active and the grid-tied PV will be

disconnected. However, the PV+BESS system at bus 7 can energize the local load. Island D can be

energized by the grid-forming PV+BESS system at bus 4.

Figure 4.5 A single line diagram of a network with one damaged line.

The connectivity constraints of the PVs are represented by constraints (4.39)-(4.42). The idea of

the approach is to use virtual sources, loads, and flow to identify the energized buses in the network.

The constraints for the virtual framework are formulated as follows:

vSi,ϕ,t +
∑

k∈K(.,i)

vfk,ϕ,t = Xi,t +
∑

k∈K(i,.)

vfk,ϕ,t, ∀i, ϕ, t (4.39)

∑
∀ϕ

∑
∀t
vSi,ϕ,t = 0, ∀i ∈ ΩB\{ΩC

PV ∪ ΩG ∪ ΩSub} (4.40)

− (uk,t pk,ϕ)M ≤ vfk,ϕ,t ≤ (uk,t pk,ϕ)M,∀k ∈ ΩK , ϕ, t (4.41)

Xi,t ≥ yi,t, ∀i ∈ ΩB\{ΩG ∪ ΩC
PV ∪ ΩH

PV }, t (4.42)



www.manaraa.com

60

To identify whether an island is energized by grid-forming generators or not, we create a virtual

network. First, each grid-forming generator is replaced by a virtual source/generator with infinite

capacity. Other power sources without grid-forming capability (e.g., grid-tied PVs) are removed.

Also, virtual loads with magnitude of 1 are placed on each bus, and the actual loads are removed.

For example, the network shown in Fig. 4.5 is transformed to the network shown in Fig. 4.6.

Figure 4.6 A virtual network created for the network shown in Fig. 4.5.

In the mathematical model, we add a node-balance equation for each virtual bus. If the virtual

load at a bus is served, then that bus is energized. Therefore, for islands without grid-forming

generators, all buses will be de-energized as the virtual loads in the island cannot be served.

Constraint (4.39) is the node balance constraint for the virtual network. Constraints (4.40) states

that buses without grid-forming power generators do not have virtual sources. The variable vfk

represents the virtual flow on line k and each bus is given a load of 1 that is multiplied by Xi.

Therefore, Xi = 1 (bus i is energized) if the virtual load can be served by a virtual source and 0

(bus i is de-energized) otherwise. The virtual flow limits is defined in (4.41). If bus i is de-energized,

then the load must be shed (4.42), unless bus i has a local power source.

4.2.4 Battery Energy Storage

0 ≤ P chi,ϕ,t ≤ uESi,t P
ch
i , ∀i ∈ ΩES , ϕ, t (4.43)
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0 ≤ P dchi,ϕ,t ≤ (1− uESi,t )P
dch
i , ∀i ∈ ΩES , ϕ, t (4.44)

ESi,t = ESi,t−1 + ∆t(ηc
∑
∀ϕ

P chi,ϕ,t −
∑
∀ϕ P

dch
i,ϕ,t

ηd
), ∀i ∈ ΩES , t (4.45)

ESi ≤ ESi,t ≤ E
S
i , ∀i ∈ ΩES , t (4.46)

(QESi,ϕ,t)
2 + (P chi,ϕ,t + P dchi,ϕ,t)

2 ≤ (SESi )2,∀i ∈ ΩES , ϕ, t (4.47)

Binary variable uES represents the charging (1) and discharging (0) state of the BESS. Limits

on the charge and discharge powers are imposed using constraints (4.43) and (4.44), respectively.

Constraint (4.45) represents the dynamic state of energy for each BESS, where the efficiencies ηc

and ηd are assumed to be 0.95. The energy is limited to a minimum and maximum value in (4.46).

ESi,t is assumed to be between 0.2 and 0.9 of the rated capacity in this study. The active and reactive

power should not exceed the rating of the BESS, as enforced by (4.47) [113]. Constraint (4.47) is

quadratic, therefore, it is linearized using the circular constraint linearization method presented in

[56]. Subsequently, constraint (4.47) is replaced by (4.47a)-(4.47c).

− uESi,t SESi ≤ QESi,ϕ,t ≤ uESi,t SESi ,∀i ∈ ΩES , ϕ, t (4.47a)

|(P chi,ϕ,t + P dchi,ϕ,t) +QESi,ϕ,t| ≤
√

2SESi ,∀i ∈ ΩES , ϕ, t (4.47b)

|(P chi,ϕ,t + P dchi,ϕ,t)−QESi,ϕ,t| ≤
√

2SESi ,∀i ∈ ΩES , ϕ, t (4.47c)

4.2.5 Routing Constraints

The routing problem can be defined by a complete graph with nodes and edges G(N,E). The

node set N in the undirected graph contains the depot and damaged components, and the edge set

E = {(m,n)|m,n ∈ N ;m 6= n} represents the edges connecting each two components. The graph G

can be obtained from a transportation network (Ĝ). Transportation networks can be represented by

nodes (depots, damaged components, intersection nodes) and paths connecting the nodes. Consider

the transportation network shown in Fig. 4.7a, where there are two damaged components and

one depot. The information that is required by the DSRRP model is the travel time between the
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damaged components and the depot. Therefore, we can convert Ĝ to the network G shown in Fig.

4.7b by finding the shortest paths between damaged components and the depot [74], which can be

obtained using shortest path algorithms such as Dijkstra’s algorithm [114].

2 2

1

1

2

1

2 3

4

4

3 4
transform to 𝐺

(a) (b)

Depot Damaged components Intersection Road/path

A

B

A

B

Figure 4.7 Example of (a) a transportation network transformed to (b) graph G for the

crew routing model.

In the example shown in Fig. 4.7, the shortest path between the depot and damaged component

A has a total length of 3 units. Therefore, the depot is connected directly to damaged component A

in G with a length of 3 units. The same procedure is conducted to form the rest of the network G.

If a path between two nodes in Ĝ is completely blocked or severely damaged, then the travel time

of the path can be set to a large value |T |, where T is the time horizon. In practice, utilities use

geographic information system (GIS) software to map the distribution network. Real-time data

about road conditions, location of the crews, and status of the components are fed into the GIS.

The utilities can then use the GIS to estimate the travel times.

Our purpose is to find an optimal route for each crew to reach the damaged components. The

value of xm,n,c determines whether the path crew c travels includes the edge (m,n) with m preceding

n. The routing constraints for the first stage problem are formulated as follows:

∑
∀m∈N

xφ0c ,m,c = 1,∀c (4.48)

∑
∀m∈N

xm,φ1c ,c = 1,∀c (4.49)
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∑
∀n∈N\{m}

xm,n,c −
∑

∀n∈N\{m}

xn,m,c = 0,∀c,m ∈ N\
{
φ0
c , φ

1
c

}
(4.50)

∑
∀c∈CL

∑
∀m∈N\{n}

xm,n,c = 1, ∀n ∈ ΩDL (4.51)

∑
∀c∈CT

∑
∀m∈N\{n}

xm,n,c = 1,∀n ∈ ΩDT (4.52)

Constraint (4.48)–(4.49) guarantee that each crew starts and ends its route at the defined start

(φ0
c) and end (φ1

c) locations. Constraint (4.50) is the flow conservation constraint; i.e., once a crew

arrives at a damaged component, the crew moves to the next location after finishing the repairs.

Constraint (4.51) ensures that each damaged component is repaired by only one line crew, while

(4.52) ensures that each damaged component that needs removing a fallen tree first, is assigned to

one tree crew.

4.2.5.1 Arrival Time

αm,c + ETm,c + trm,n − (1− xm,n,c)M ≤ αn,c∀m ∈ N\{φ1
c}, n ∈ N\

{
φ0
c ,m

}
, c (4.53)

∑
c∈CL

αm,c ≥
∑
c∈CT

αm,c + ETm,c
∑
∀n∈N

xm,n,c,∀m ∈ ΩDT (4.54)

Constraint (4.53) is used to calculate the arrival time (the time when crew c starts repairing

component m) for each crew at each damaged component. For a crew that travels from damaged

component m to n, αn,c equals αm,c +ETm,c + trm,n. Big M is used to decouple the times to arrive

at components m and n if the crew does not travel from m to n. Constraint (4.54) indicates that

the line crews start repairing the damaged components after the tree crews clear the obstacles.

4.2.5.2 Resource Constraints

EDd,τ ≥
∑

∀c∈CL,φ0c=d

ECc,φ0c ,τ +
∑
∀c∈CL

ECc,d,τ ,∀d, τ (4.55)

∑
∀τ

CapRτ CEc,m,τ ≤ CapCc , ∀m, c ∈ CL (4.56)

∑
∀n∈N

xn,m,cRm,τ ≤ CEc,m,τ , ∀m, τ, c ∈ CL (4.57)
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−M(1− xm,n,c) ≤ CEc,m,τ −Rm,τ − CEc,n,τ ≤M(1− xm,n,c),

∀m ∈ N\{φ1
c}, n ∈ N\

{
φ0
c ,m

}
, c ∈ CL, τ

(4.58)

−M(1− xd,n,c) ≤ CEc,d,τ + ECc,d,τ − CEc,n,τ ≤M(1− xd,n,c),

∀d, n ∈ N\
{
φ0
c , φ

1
c , d
}
, c ∈ CL, τ

(4.59)

−M(1− xφ0c ,n,c) ≤ E
C
c,φ0c ,τ

− CEc,n,τ ≤M(1− xφ0c ,n,c),∀n ∈ N\
{
φ0
c

}
, c ∈ CL, τ (4.60)

Constraint (4.55) states that the total resources that the crews obtain from depot d must be less

or equal to the amount of available resources in the depot. The amount of resources that a crew

can carry must be limited by the crew’s capacity, which is realized by constraint (4.56). Constraint

(4.57) indicates that the crews must have enough resources to repair the damaged components.

Constraint (4.58) ensures that if a crew travels from m to n, then the resources that the crew has

when arriving at location n is CEc,n,τ = CEc,m,τ − Rm,τ . If a crew goes to depot d to pick up

supplies and travels to damaged component n, then CEc,n,τ = CEc,d,τ + ECc,d,τ , which is enforced

by (4.59). Constraint (4.60) ensures that the number of resources that the crew has at the first

damaged component is equal to the resources obtained at the starting location.

4.2.6 Connecting Routing and System Operation

Constraints (4.61)–(4.64) are used to connect the crew scheduling and power operation problems.

∑
∀t
fm,t = 1 , ∀m ∈ ΩDL (4.61)

∑
∀t
tfm,t ≥

∑
∀c

(αm,c + ETm,c
∑
∀n∈N

xm,n,c), ∀m ∈ ΩDL (4.62)

0 ≤ αm,c ≤M
∑
n∈N

xn,m,c, ∀m ∈ N\
{
φ0
c , φ

1
c

}
, c (4.63)

um,t =
t∑
t̄=1

fm,t̄ , ∀m ∈ ΩDL, t (4.64)

{f, x, u, y,X , γ} ∈ {0, 1}, {CE,EC} ≥ 0 (4.65)

Let fm,t denote the time when the damaged component is repaired by the line crews, which

equals 1 in one time interval as enforced by (4.61). Equation (4.62) determines the time when a
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damaged component is repaired by setting
∑
∀t tfm,t to be greater than or equal to αm,c +ETm,c

for the crew assigned to damaged component m. Constraint (4.63) is used to set αm,c = 0 if crew c

does not travel to component m, so it would not affect constraint (4.62). Fig. 4.8 demonstrates the

time sequence of the repair process and how to find the time when the component is repaired.

Figure 4.8 Time sequence of the repair process.

Starting from the depot, if both travel time and repair time are 4 hours, the restoration time is∑
∀t
t fm,t = 8. Finally, constraint (4.64) indicates that the restored component becomes available

after it is repaired, and remains available in all subsequent periods. For example, if a component is

repaired at t = 3, then fm,t = [0, 0, 1, 0, 0, 0] and um,t = [0, 0, 1, 1, 1, 1].

4.2.7 Big M

The value used for M depends on the constraint. An inappropriately large M may increase the

computation time, and a small value may introduce infeasibility. In constraint (4.11) and (4.12),

the maximum and minimum values for the voltage are 1.05 and 0.95 per unit. Hence, the largest

possible difference between any two squared voltages (Uj,ϕ,t − Ui,ϕ,t) is 0.4 per unit. Accordingly,

the minimum value of M in (4.11) and (4.12) is 0.4 per unit, and the same value can be used in

(4.25). For the big M value in (4.41), the maximum virtual flow is equal to the number of buses,

thus, M is equal to |ΩB|.

In the routing constraints, the crews must arrive at the damaged components before starting

the repairs. For example, if the time horizon is T = 10, and the repair time for some damaged

component m is ETm = 1, then the crew should arrive at αm,c,s = 9 at the latest in order to repair

the component. Note that the time horizon should be chosen such that all damaged components
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can be repaired in the optimization problem. Therefore, the minimum value of M in (4.63) equals

the time horizon minus the minimum repair time. The minimum repair time is used to obtain the

largest difference between T and the repair times of the components. Denote the value of M in

(4.63) as M27. For (4.53), the value of M should be larger than the time horizon T . In a worst-case

scenario, the arrival time of crew c at damaged component m is αm,c = M27, and the crew does not

repair damaged component n, as per equation (4.63), αn,c = 0. Consequently, (4.53) is translated

to M27 + ETm,c + trm,n − 0 ≤M . Hence, the minimum value of M in (4.53) equals M27 plus the

maximum repair and travel times. The value of M in (4.58)-(4.60) can be set to equal two times the

capacity of the crews, as the crews cannot carry more than their defined capacity.

4.3 Solution Algorithms

DSRRP combines two problems, the Vehicle Routing Problem for routing the crews [115],

and distribution system operation for outage restoration. VRP is an NP-hard combinatorial

optimization problem, where the computation time rises exponentially with the size of the problem.

Adding distribution system operation constraints will further increase the complexity. A three-stage

algorithm for solving the combined routing and distribution system operation problem is presented

in this section, where the stages are: assignment, initial solution, and neighborhood search. The

three-stage algorithm is referred to as the Reoptimization Algorithm. Furthermore, to compare

the developed method with current practices, a priority-based method that mimics the utilities’

scheduling procedures is developed, and the cluster-first method proposed in [71] is presented.

4.3.1 Priority-Based Routing

In general, utilities schedule the repairs using a defined restoration priority list. To compare

the proposed approach to current practices, a priority-based method is developed to replicate the

procedure that the utilities follow. Each utility has its own priority list but it can be generally

summarized as follows [116]:

1. Repair lines connected to high-priority customers.
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2. Repair 3-phase lines starting with upstream lines

3. Repair single phase lines and individual customers

Define Lr as the set of lines to repair with priority r, and Wr is a weighting factor, where

W1 > W2 > W3 (e.g., W1 = 10,W2 = 5,W3 = 1). L1 contains the lines that must be repaired to

restore critical customers, which can be found by solving the following problem:

min{
∑

k∈ΩDL

uk|s.t. (4.2)-(4.12), (4.28)-(4.47), yi = 1, ∀i ∈ ΩHP } (4.66)

Problem (4.66) finds the minimum number of lines required to repair, so that all high-priority

loads are restored. L2 represents the 3-phase lines not in L1, and L3 represents the rest of the lines.

The following routing model is solved to find the repair schedule by utilizing the priority of each

line, as follows:

xr= arg min{
∑
∀r

∑
∀k∈Lr

∑
∀c∈CL

Wrαc,k|s.t.(4.48)-(4.64)} (4.67)

The objective of (4.67) is to minimize the arrival time of the line crews at each damaged

components, while prioritizing the high-priority lines through multiplying the arrival time by the

weight Wr. The priority-based model is similar to DSRRP, but without the power operation

constraints. However, it is still difficult to solve directly in a short time using a commercial solver

such as CPLEX. Therefore, the same procedure presented in Algorithm 2 is used to solve (4.67).

After obtaining the route xr, the DSRRP problem is solved by setting x = xr; i.e., we solve

min{(4.1)| s.t. (4.2)-(4.12), (4.28)-(4.47), (4.53)-(4.64), xm,n,c = xrm,n,c, ∀c,m, n}.

4.3.2 Cluster-Based Routing

To reduce the computation complexity of the co-optimization problem, we propose a clustering

method to assign damaged components to depots [71]. The damaged components are clustered

into CS clusters, which is determined by the number of depots. By performing the pre-routing

clustering, the routing problem is decomposed from a single large VRP problem to CS small VRP

problems. After damages are clustered, the information is sent to the second stage to solve the
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DSRRP. The clustering problem is formulated as an integer linear program. The input data of the

optimization problem includes distances between depots and damaged components Dd,m, resources

available at depots EDd,τ and resources required to fix the damage Rm,τ . A binary variable csd,m is

used to decide which cluster/depot a component m is assigned to.

csd,m =

 1 ,m is clustered to w

0 , o.w.
∀d,m (4.68)

If the depot does not have enough resources, the damaged component is clustered to the next closest

depot. The clustering problem is modeled as follows:

min
∑
∀d

∑
∀m

Dd,m csd,m (4.69)

∑
∀d

csd,m = 1 , ∀m (4.70)

EDd,τ ≥
∑
∀m
Rm,τ csd,m , ∀d, r (4.71)

csw,m ∈ {0, 1} , ∀w,m (4.72)

The objective (4.69) is to assign the damaged components to their closest depots. Constraint

(4.70) ensures that a damaged component is assigned to a single depot. The assignment is performed

while considering the resource availability constraint in (4.71). The resource constraint ensures that

depots have enough resources to handle the assigned damaged components. After assigning the

damaged components to different depots, DSRRP is solved with the crews dispatched based on the

clusters. Define CL(d) and CT (d) as the set of line and tree crews located at depot d, respectively.

Therefore, the cluster-based model can be formulated as follows.

min{(3.1)| s.t. (4.2)-(4.12), (4.28)-(4.47), (4.53)-(4.64)∑
∀c∈CL(w)

∑
∀m∈N\{n}

xm,n,c = 1, ∀n ∈ ΩDL,

∑
∀c∈CT (w)

∑
∀m∈N\{n}

xm,n,c = 1, ∀n ∈ ΩDT }

(4.73)
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4.3.3 Reoptimization Algorithm

The tri-stage Reoptimization algorithm starts by solving an assignment problem, where the

crews are assigned to the damaged components based on the expected working hours, distances

between the crews and the outage locations, and the capacity of the crews. In the second stage, the

DSRRP is solved with the crews dispatched to the assigned components from the first stage. In

the third stage, a neighborhood search approach [101] is used to iteratively improve the routing

decisions obtained from stage two. The algorithm is described in the following subsections.

4.3.3.1 Assignment-Based Routing

By assigning the damaged components to the crews, the large VRP problem can be converted

to multiple small-size Traveling Salesman Problems [115]. The assignment problem is formulated as

follows:

minLL + LT +
∑
∀c

∑
∀d
Pc,d + t̄r (4.74)

LL ≥
∑
∀m

ALm,cETm,c,∀c ∈ CL (4.75)

LT ≥
∑
∀m

ATm,cETm,c,∀c ∈ CT (4.76)

∑
∀c∈CL

ALm,c = 1,∀m ∈ ΩDL (4.77)

∑
∀c∈CT

ATm,c = 1,∀m ∈ ΩDT (4.78)

∑
∀τ

CapRτ E
C
c,d,τ ≤ (δd,c + zd,c)Cap

C
c , ∀d, c ∈ CL (4.79)

zd,c ≤ δd,c,∀d,m, c ∈ CL (4.80)

Pc,d ≥ ALm,ctrd,m −M(1− zd,c),∀d,m, c ∈ CL (4.81)∑
∀c∈CL

ECc,d,τ ≤ EDd,τ , ∀d, τ (4.82)

∑
∀w

ECc,d,τ ≥
∑
∀m

ALm,cRm,τ ,∀c ∈ CL, τ (4.83)

t̄r ≥ trm,n(ALm,c +ALn,c − 1),∀m,n, c ∈ CL (4.84)
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t̄r ≥ trd,m(δd,c +ALm,c − 1), ∀d,m, c ∈ CL (4.85)

t̄r ≥ trm,n(ATm,c +ATn,c − 1), ∀m,n, c ∈ CT (4.86)

t̄r ≥ trd,m(δd,c +ATm,c − 1),∀d,m, c ∈ CT (4.87)

{AL/T , z} ∈ {0, 1}, {P, EC} ≥ 0 (4.88)

The objective (4.74) consists of four parts. The first two terms minimize the expected time of

the last repair for the line crews (LL) and tree crews (LT ). The variables LL and LT are defined

in constraints (4.75) and (4.76), respectively. The third term in (4.74) is a penalty cost used to

limit the number of times a crew goes back to the depot to pick up additional resources. The fourth

term t̄r is the maximum travel time for the crews. Constraints (4.77)-(4.78) assign each damaged

component to one crew. The amount of resources a crew can carry is limited by the crew’s capacity

in (4.79). Binary variable zd,c is equal to 1 if a crew requires additional resources. In such case,

the crew goes back to the depot to pick up the required resources. Constraint (4.80) states that

the crews can go back to the depot they started from. We set the penalty term Pd,c to be equal to

the maximum travel time between the depot and the assigned damage components, as defined in

(4.81). The big M constant is added so that the penalty term equals 0 if the crew does not go back

to the depot for additional resources. The crews must use the resources available in the depot as

enforced by (4.82). Constraint (4.83) indicates that the number of resources crew c has should be

enough to repair the assigned damaged components. Constraints (4.84)-(4.87) are used to identify

the maximum travel time between the damaged components that are assigned to each crew. If

components m and n are assigned to crew c, then t̄r ≥ trm,n.

4.3.3.2 Large Neighborhood Search

After assigning each damaged component to a crew, DSRRP is solved with the crews dispatched

to the assigned components. Subsequently, a neighborhood search method is used to improve the

initial route. The optimization problem considered in this study involves a dynamically changing

environment due to the uncertainty of the repair time, solar irradiance, and demand. The repair
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time is updated periodically either by the repair crews or the damage assessors. Therefore, we

apply the neighborhood search algorithm continuously and update the routing solution as more

information is obtained. The advantage of this method is that it allows the algorithm to update the

solution while the repair crews are repairing the lines, therefore, loosening the time limit restriction.

The pseudo-code for the proposed algorithm (Reoptimization algorithm) is detailed in Algorithm 2.

Algorithm 2 Reoptimization Algorithm for DSRRP

Obtain the location of the outages from the damage assessors.
1: solve using CPLEX {Assignment}

(AL, AT ) = arg min{(4.74)|s.t. (4.75)-(4.88)}
2: for all c ∈ CL do
3: N(c) = {m|∀m ∈ ΩDL, A

L
m,c = 1} ∪ ΩP

4: end for
5: for all c ∈ CT do
6: N(c) = {m|∀m ∈ ΩDT , A

T
m,c = 1} ∪ ΩP

7: end for
8: solve using CPLEX (time limit = 300 s) {Assignment-DSRRP}
ζ∗ = min{(4.1)|s.t. (4.2)-(4.12), (4.25)-(4.64),

∑
n∈N(c) xm,n,c = 1,∀c,m ∈ N(c)}

9: obtain solution x∗ and objective ζ∗

10: let x̄ = x∗ and ζ̄ = ζ∗

11: repeat
12: set count = 0
13: set ss = ss0 {sample size}
14: while time limit is not surpassed do {Neighborhood Search}
15: let N̄ = sample(N, ss), where N̄ ⊂ N and |N̄ | = ss.
16: solve using CPLEX (time limit = 120 s) with warm start

ζ∗ = min{(4.1)|s.t. (4.2)-(4.12), (4.25)-(4.64), xm,n,c = x̄m,n,c,∀c, m ∈
N\N̄ , n ∈ N\N̄}

17: obtain x∗ and objective ζ∗

18: if ζ∗ < ζ̄ then
19: set x̄ = x∗; ζ̄ = ζ∗; count = 0
20: else
21: count = count+ 1
22: end if
23: if ss = |N | then break {solution is optimal}
24: if count = h1 then ss = ss+ 1
25: if count = h1 + h2 then break
26: end while
27: dispatch crews and set the traveled path as constant
28: update the repair time and return to Step 11
29: until all lines are repaired

In Step 1, the assignment problem is solved using CPLEX [117] to obtain the binary variables ALm,c

and ATm,c. These variables are used to find N(c), which is the set of damaged components assigned
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to crew c. For example, consider the set of damaged components ΩDL = {1, 2, 3, 4, 5}, if line crew 1

is assigned with damaged components 1 and 3, then ALm,c = {1, 0, 1, 0, 0} and N(1) = {1, 3} ∪ ΩP .

N(c) is found for each crew in Steps 2-7. Consequently, a simplified DSRRP is solved in Step 8 by

allowing the crews to only repair the assigned damaged components. In Step 10, the obtained route

x∗ and objective ζ∗ are set to be the incumbent (current best solutions) route (x̄) and objective

(ζ̄). Steps 11-29 represent the neighborhood search algorithm. The algorithm selects a subset of

damaged components N̄ , where N̄ ⊂ N , then removes the paths connected to N̄ and sets the rest

of the routes to be constant by forcing xm,n,c = x̄m,n,c,∀c, m ∈ N\N̄ , n ∈ N\N̄ . Afterwards,

DSRRP is solved to obtain an improved solution, the process is demonstrated in Fig. 4.9, where

|N̄ | = 3.

Figure 4.9 A single iteration of the neighborhood search, with |N̄ | = 3.

Steps 12 and 13 initialize a counter and the sample size (ss), respectively. In Step 15, the subset

N̄ is determined by randomly selecting ss nodes from N . The parameters ss0, h1, and h2 are

constants used to tune the algorithm. The value of ss0 determines the size of the subset N̄ in the

first iteration. The size of N̄ is increased after h1 iterations with no change to the objective, and

the neighborhood search algorithm is terminated after h1 + h2 iterations with no change to the

objective. In this study, ss0 is set to be 3, as selecting 1 damaged component will not change the

route, and selecting 2 has minimal impact on the route. The values of h1 and h2 were determined

experimentally using several test cases, both h1 and h2 equal 3. The DSRRP is solved in Step 16

with parts of the route set as constant. To obtain a fast solution, we warm start (provide a starting
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point) CPLEX by using the incumbent solution and enforce a time limit of 120 seconds for each

iteration. The objective value ζ∗ obtained from Step 16 is compared to the current incumbent

solution ζ̄. If the value is improved, we set ζ∗ and x∗ as the current incumbent solutions and

update the counter, otherwise, the counter increases by one. The process is repeated until the

counter reaches h1, where we increase the size of the subset in Step 24. If the sample size is |N |;

i.e., the complete problem is solved without simplification, then the solution is optimal and the

neighborhood search stops. Also, the search ends once the counter reaches h1 + h2, or if the time

limit is reached. The crews are then dispatched to the damaged components, and the traveled paths

are set as constants in the optimization problem. After that, the repair time is updated and Steps

14-26 are repeated to update the route, as shown in Fig. 4.10. The idea of the dynamic approach is

to run Steps 14-26 while maintaining the best solution in an adaptive memory. Once the operator

receives an update from the field, the neighborhood search is restarted with the newly acquired

information. Whenever a crew finishes repairing the assigned damaged component, the crew is

provided with the current best route x̄. A flowchart for the proposed algorithm is presented in Fig.

4.11.

Figure 4.10 Dynamic vehicle routing problem.
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Figure 4.11 Flowchart of the Reoptimization algorithm.
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4.4 Simulation and Results

4.4.1 Test Case: IEEE-123 distribution feeder

The modified IEEE 123-bus distribution feeder is used as a test case for the DSRRP problem.

Detailed information on the network can be found in [93]. Since transportation networks data for

the IEEE 123-bus test case is not available, the network G and the travel times are simulated by

using the Euclidean distance [12]. The average speed of the crews is assumed to be 35 mph in

the simulated problem. The travel time is calculated by dividing the Euclidean distances between

all nodes by the speed of the crews. We then scale the travel time such that the travel time

between the two furthest locations equals 2 hours. The x-coordinates and y-coordinates for the

IEEE 123-bus test cases can be found in [93]. We assume that there is an available path to each

damaged component. The network, shown in Fig. 4.12, is modified by including 4 dispatchable

DGs, 18 new switches, 5 PVs and 2 BESSs. The 4 DGs are rated at 300 kW and 250 kVAr. PVs in

On-grid and hybrid systems are rated at 50 kW, and the PV at bus 62 is rated at 900 kW. The

forecasted solar irradiance used in the simulation is presented in Fig. 4.13, which is obtained from

the National Solar Radiation Data Base (NSRDB) [118]. The data in Fig. 4.13 represent the solar

irradiance at a location impacted by Hurricane Matthew.

The BESSs at bus 2 and 62 are rated at 50 kW/132 kWh and 500 kW/ 2100 kWh, respectively. Fig.

4.14 shows the load shedding costs of each load. The problems of optimally allocating the resources,

DGs, or switches, are out of the scope of this study. We assume there are 3 depots, 6 line crews

distributed equally between the depots, and 4 tree crews with 2 located in Depot 2 and 1 tree crew

in each of the other depots. The time step in the simulation is 1 hour. The simulated problem is

modeled in AMPL and solved using CPLEX 12.6.0.0 on a PC with Intel Core i7-4790 3.6 GHz CPU

and 16 GB RAM.
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Figure 4.12 Initial state of the distribution network after 14 lines are damaged.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

S
o

la
r 

Ir
ra

d
ia

n
ce

 (
W

/m
^
2

)

Time (hrs)

Figure 4.13 Solar irradiance for the PV systems in the simulation.



www.manaraa.com

77

0

10

20

30

40

50

60

70

80
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

L
o

ad
 S

h
ed

d
in

g
 C

o
st

 (
$

/k
W

h
)

Load Bus

Figure 4.14 The load shedding cost in $/kWh of each load in the simulation.

4.4.2 Solution Comparison

The repair and restoration problem is solved using five methods: 1) a cluster-first DSRRP-second

(C-DSRRP) approach presented in [71], the method clusters the damaged components to the depot,

then solves DSRRP; 2) priority-based method; 3) an assignment-based method where the damaged

components are assigned to the crews, then DSRRP is solved (A-DSRRP), which is similar to

Steps 1-8 in Algorithm 1; 4) Reoptimization algorithm; 5) CPLEX with warm start using the

Reoptimization algorithm solution. Once an outage occurs, the distribution network is reconfigured,

and the DGs are dispatched to restore as many customers as possible, before conducting the repairs.

A random event is generated on the IEEE 123-bus system, where 14 lines are damaged, four of

which are damaged by trees. Fig. 4.12 shows the recovery operation of the distribution system to

the outages before the repairs; i.e., the state of the system at time t = 0. The solution shown in

Fig. 4.12 is obtained regardless of the solution algorithm used, as the algorithms will only affect the

repair schedule and the network operation during the repairs.

Before the outage, all switches are closed except 151-300 and 54-94. Since line 7-8 is damaged,

the circuit breaker at the substation is opened. Sectionalizer 28-168 is switched off, forming a small

microgrid, to serve the loads at buses 28 to 30. Similarly, switches 44-165, 77-172, 97-174, 97-197,

108-175 and 108-176 are opened and 151-300 is closed to form additional microgrids using the DGs
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in the network. Switches 60-160 and 60-169 are opened so that the PV+BESS at bus 62 can form a

microgrid. The battery at bus 2 can serve the local load in the first few hours after the damage.

The repair/tree-clearing times and required resources are given in Table 4.2. The estimated repair

time is assumed to be accurate. It is assumed that each crew can carry 30 units of resources, and

the required capacities (CapRr ) for the 5 types of resources are {5, 4, 3, 2, 1}. A summary of the

results and performances of different solution methods is shown in Table 4.3. The time limit is set

to be 3600 seconds for all methods except for the last one (CPLEX with a warm start) in order to

find the optimal solution.

Table 4.2 The resources and time required to repair the damaged components

Line
Resources (units) Repair/Clearing Time (hrs)

Type 1 Type 2 Type 3 Type 4 Type 5 Line Crew Tree Crew

7–8 2 0 0 0 1 2.5

15–17 0 2 0 1 1 1.25 1

18–19 0 2 0 1 1 0.5

27–33 0 2 0 1 1 2.25

38–39 0 2 0 1 1 1 0.75

54–57 2 0 0 1 2 0.75

58–59 0 2 0 1 1 0.5

18–163 2 0 0 0 2 1.75

67–72 1 0 0 0 1 4 1.25

76–86 1 0 1 0 3 6 2

91–93 2 0 0 1 2 1.5

93–95 2 0 0 0 1 2.75

105–106 0 2 0 1 1 1.75 1

113–114 0 2 0 1 1 0.75 0.5
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Table 4.3 A comparison between four methods for the IEEE 123-bus system

Method
Objective Optimality Comp. Load Restoration

Value Gap Time Served Time

C-DSRRP $241,371 21.16% 3600 s 61.86 MWh 12 hrs

Priority-based $229,112 15.01% 662 s 62.25 MWh 9 hrs

A-DSRRP $211,597 6.21% 206 s 62.98 MWh 9 hrs

Reoptimization $199,210 0.00% 694 s 63.5 MWh 9 hrs

CPLEX $199,210 0.00% 4 hrs 63.5 MWh 9 hrs

The fifth column in Table 4.3 is the amount of energy served, and the sixth column (restoration

time) is the time when all loads are restored. The assignment-based approach (A-DSRRP) is

the fastest but the solution is not optimal, neighborhood search in the Reoptimization algorithm

improved the routing solution and obtained the best repair schedule. The Reoptimization algorithm

converged after 21 iterations, as shown in Fig. 4.15.
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Figure 4.15 Convergence of the Reoptimization algorithm

To obtain the optimal solution, the route obtained from the proposed method is used to warm

start CPLEX and solve DSRRP. CPLEX showed that the solution obtained from the Reoptimization

algorithm is optimal. C-DSRRP reached the time limit but produced a feasible solution with 21.16%

optimality gap, while the priority-based method achieved an objective value which is $29,902 higher
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than the optimal solution. The change in percentage of load served for each method is shown in Fig.

4.16. The proposed algorithm outperformed the other methods.
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Figure 4.16 Percentage of load served at each time step

Next, we compare the Reoptimization algorithm with the priority-based method using three

different damage scenarios on the IEEE 123-bus system. The simulation results are shown in Table

4.4. The proposed method outperforms the priority-based method in all instances with comparable

computation times. The results indicates the importance of co-optimizing repair scheduling and the

operation of the distribution system. For the first test case, the algorithm achieved the optimal

solution, while the optimality gap for the priority-based method is 2.98%. The Reoptimization

algorithm achieved solutions that are approximately 11% and 17% less than the priority-based

method for the second and third test cases, respectively.

Table 4.4 Three test cases solved using the Reoptimization and priority-based methods

Test Damage
Reoptimization Priority-based

Obj. % Gap Comp. Time Obj. % Gap Comp. Time

1 15 Lines $158,023 0.00% 660 s $162,734 2.98% 464 s

2 20 Lines $248,986 2.53% 762 s $279,197 14.97% 392 s

3 25 Lines $388,760 2.27% 782 s $467,278 22.93% 520 s
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4.4.3 Dynamic Solution

In practice, the crew repair time is continuously changing. Moreover, the dispatch commands

must be issued as fast as possible to reduce the outage duration. Therefore, the DSRRP must be

solved efficiently and the solutions should be dynamically updated according to the current crew

repair time. To simulate the change in repair time, it is assumed that once a crew reaches the

damaged component, the repair time is updated to its actual value by adding a random number

from the continuous uniform distribution on [-2,2] to the estimated time. For example, once crew 1

arrives at line 7-8, the repair time is changed from 2.5 to 3 hours. Similarly, the solar irradiance

is updated by adding ±5% to the forecasted value. The time limit at Step 14 in Algorithm 1 is

set to be 15 minutes after the first dispatch, so that the repair time is updated every 15 minutes.

While the crews are repairing the damaged components, the neighborhood search algorithm keeps

searching for a better solution, and the crews are dispatched using the incumbent solution. The

complete route is given in Table 4.5.

Table 4.5 Routing solution for the dynamic 123-bus test case

Crew Route

Crew 1 DP 1→ 7-8 → 15-17

Crew 2 DP 1→ 163-18 → 27-33 → DP 1 → 93-95

Crew 3 DP 2→ 54-57 → 18-19

Crew 4 DP 2→ 113-114→ DP 3 → 105-106→DP 2→ 91-93

Crew 5 DP 3→ 38-39 → 67-72

Crew 6 DP 3→ 58-59 → 76-86

Crew 7 DP 1→ 27-33 → 15-17

Crew 8 DP 2→ 76-86

Crew 9 DP 2→ 67-72

Crew 10 DP 3→ 113-114→ 105-106
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The total cost is $192,694, and the total energy served is 64.7 MWh. Table 4.6 shows the timeline

of events after solving DSRRP, where all loads are restored after 8 hours. The initial states of the

switches are shown in Fig. 4.12, and the subsequent switching operations are given in Table 4.6.

Table 4.6 Event timeline for the IEEE 123-bus dynamic test case

Time step
Switch operation

Repaired % Load Served
open close

1 29%

2 29%

3 18-135 44-165

108-176

38-39

163-18

58-59

113-114

39%

4 13-163

13-164

60-169

150-149

7-8

54-57

61%

5 13-164

97-197

108-175

15-17

27-33

105-106

73%

6 72-166 13-163

168-28

60-160

97-174

18-19

67-72

89%

7 89%

8 72-166

77-172

76-86

91-93

93-95

100%

9 151-300 18-135 100%

The 3-phase output of the DGs and the substation are shown in Fig. 4.17, and Fig. 4.18 shows

the output of the PVs and BESSs. Crew 5 repairs line 38-39 and switch 18-135 is opened and 44-165

is closed to restore the loads at buses 35 to 46. Once line 113-114, is repaired by tree crew 10 and

line crew 4, switch 108-174 is closed to restore the loads at buses 109 to 114. After repairing line

7-8 in time step 4, the CB is closed and the network starts to receive power from the substation.

Switches 13-163 and 13-164 are opened to keep lines 15-17, 18-19, and 27-33 isolated. Loads at

buses 52 to 59 are restored after repairing lines 54-57 and 58-59. 8 loads are restored after repairing

lines 15-17 and 105-106. After 6 hours, the loads around depot 1 are restored after repairing line
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18-19 and closing switch 13-163. Finally, all loads are restored after 8 hours once lines 76-86, 91-93,

and 93-95 are repaired. Switch 151-300 is opened and 18-135 is closed to return the network to

its original configuration, and the substation can serve all loads. Fig. 4.19 shows the distribution

system status at different time points, where the shaded areas are energized. Once lines 76-86,

91-93, and 93-95 are repaired, the system returns to its normal condition.
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Figure 4.17 The 3-phase active power delivered by the DGs and substation.
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Figure 4.19 The status of the IEEE 123-bus system after (a) 3 hours, (b) 4 hours, (c) 5

hours, and (d) 6 hours

4.4.4 Advantages of DGs and Switches

To show the importance of DGs and automatic switches, we vary the number of DGs and

switches in the test case shown in Fig. 4.12, and solve the repair and restoration problem using the

Reoptimization algorithm. Table 4.7 shows the results. As one would expect, the best performance

is obtained with the highest number of DGs (11) and switches (23). However, having a large number

of DGs is not beneficial without switches, as can be seen when the number of switches is decreased

to 7, while maintaining 11 DGs. In this case, the total cost is increased by approximately 83%. The

worst scenario is a low number of both DGs and switches. For example, with 7 switches and 0 DGs,
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the total cost is more than 200% higher than the best-case scenario (with 11 DGs and 23 switches).

This experiment supports previous work showing the importance of optimizing the number of DGs

and switches [8].

Table 4.7 Objective value of DSRRP with varying numbers of DGs and switches

Number of DGs
Number of Switches

23 14 7

11 $ 199,210 $ 231,803 $ 363,989

4 $ 223,291 $ 289,435 $ 388,111

0 $ 345,175 $ 412,998 $ 421,692

4.4.5 Power Flow Validation

Equations (4.18)-(4.23) used in the DSRRP model can approximate the unbalanced power flow

operation of three-phase unbalanced systems, however, the formulation introduces approximation

errors. Therefore, we validate the unbalanced formulation by comparing the voltage magnitude

that the formulation produces with the results from OpenDSS, which is an open-source software

developed by the Electric Power Research Institute (EPRI). The IEEE 123 bus system is used in

this section for validation. The voltage magnitude for the linear power flow results are compared

with the OpenDSS results in the correlation plot in Fig. 4.20. The figure shows that the results are

closely correlated. The maximum error is around 0.0076 p.u. and the average error is 0.0019 p.u.

The error is mainly due to neglecting the losses in the linear formulation.

4.5 Summary

A new mathematical model that combines 3-phase unbalanced distribution system operation,

fault isolation and restoration, PV and BESS systems operations, and resources coordination is

developed in Section 4.2. The model included the coordination of line and tree crews as well as

equipment pickup for conducting the repairs. Also, a new framework for modeling the connectivity

of PV systems is designed. Furthermore, a three-stage algorithm is developed with a newly designed

neighborhood search algorithm to iteratively improve the routing solution in Section 4.3. The
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Figure 4.20 The 3-phase active power delivered by the DGs and substation.

developed approach is able to restart when the repair time is updated, and the crews are dispatched

based on the incumbent solution. Test results have shown that the proposed algorithm can provide

effective restoration plans within the time limit.
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CHAPTER 5. DISTRIBUTION SYSTEM REPAIR AND RESTORATION

USING STOCHASTIC PROGRAMMING

5.1 Overview

The aim of this chapter is to use stochastic programming to solve DSRRP. Scenario generation

is discussed in Section 5.2, where we consider demand and solar irradiance uncertainties, and model

the uncertainty of the repair time using a lognormal distribution. Section 5.3 proposes a two-stage

stochastic mixed integer linear programming model to co-optimize distribution system operation and

repair crew routing for outage restoration after extreme weather events. The first stage is to dispatch

the repair crews to the damaged components. The second stage is distribution system restoration

using distributed generators and reconfiguration. The stochastic DSRRP model is decomposed into

two stages and solved using Progressive Hedging in Section 5.4. The proposed method is validated

on modified 123-bus distribution test system in Section 5.5.

5.2 Scenario Generation

In this chapter, the uncertainties of repair time, load, and solar irradiance are represented by a

finite set of discrete scenarios, which are obtained by sampling. The lognormal distribution is used

to model the repair time, as recommended in [119]. The lognormal probability distribution density

function is given as:

f(x;µ, σ) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

(5.1)

where µ and σ are called the location parameter and the scale parameter, respectively. The lognormal

distribution is a commonly used distribution for equipment and system maintainability analysis,

and applies to many maintenance and repair tasks [120]. The clearing time for the tree crews is
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assumed to follow a truncated normal distribution, with a minimum of 30 minutes, maximum of 3

hours, and a mean of 1 hour.

Load uncertainty is modeled in terms of load forecast error [121]. Define PFi,ϕ,t as the load

forecast for the load at bus i at time t, Fig. 5.1 shows an example of a 24-hour load profile. A load

forecast error is generated independently for every hour. The forecast error at time t in scenario s

is a realization of a truncated normal random variable et,s, so that the error is bounded using a

fixed percentage (e.g., 15%). The active demand for the load at bus i and time t in scenario s is

then obtained as follows:

PDi,ϕ,t,s = PFi,ϕ,t(1 + et,s) (5.2)

where a similar equation is used to obtain the corresponding realization for reactive power. By

bounding the error to ±15%, equation 5.2 states that the actual load is within 15% of the forecasted

load. Fig. 5.2 shows an example of 30 generated scenarios for one load, where PFi,ϕ,t is the load

forecast, and PDi,ϕ,t,s is the generated scenario.

Figure 5.1 Forecast of active power consumption of a load.

In this sudy, the PVs are considered as non-dispatchable DGs. The power generated by PVs is

dependent on the incident solar irradiance level, while the irradiance depends on the cloud coverage

level (CCL). The sky condition can be divided into four categories: clear, partly clear, mostly

cloudy, and overcast. It is assumed that the sky condition is clear after the extreme event in the test

cases presented in this chapter. Monte Carlo simulation is used to generate a finite set of random
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Figure 5.2 Generated scenarios of active power of a load.

scenarios representing the solar irradiance. This uncertainty is modeled through CCL in each time

period. Therefore, the cloud coverage level can be represented as CCL(t,s), where t is the hour

of the day and s is the scenario. The scenario generation procedure starts by randomly selecting

a cloud-type according to the probabilities in Table 5.1 [122] for each scenario s. Then, CCL is

determined as follows:

CCL(t, s) = U(CCLmin, CCLmax) (5.3)

A random correction factor is used to the variability and forecast errors. The corrected CCL value

is modeled using a normal distribution with mean CCL(t, s) and standard deviation 0.05.

CCLcorrected(t, s) = max(0,N (CCL(t, s), 0.05)) (5.4)

The random values of CCL are used to calculate the current solar irradiance level using the following

equation:

Ir(t, s) = Īr(t)(1− CCLcorrected(t, s)) (5.5)

where Ir(t, s) is the solar irradiance level at time t and scenario s, and Īr(t) is the maximum

irradiance at instant t. The output power of the PVs can be calculated using equation 4.35. An

example of 30 generated scenarios is shown in Fig. 5.3.

For a time horizon T and scenario index s, we can summarize the random variables as follows:

1) the repair times of damaged lines ETL
s ∈ R|ΩDL|; 2) tree clearing time ET T

s ∈ R|ΩDT |; 3) load
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Table 5.1 Cloud coverage probability

CCL Cloud type Probability of occurrence

0.00-0.05 1 0.67

0.05-0.15 2 0.19

0.15-0.25 3 0.14
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Figure 5.3 30 generated scenarios for the solar irradiance level.

forecast error es ∈ RT ; and 4) Irs ∈ RT . By combining all random variables, the number of random

variables is (2T + |ΩDL|+ |ΩDT |), and we assume they are mutually independent. Therefore, for |S|

scenarios, we can define a matrix ξ ∈ R(2T+|ΩDL|+|ΩDT |)×|S| whose rows consist of random variables

and columns consist of scenarios as follows:
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ξ =

s = 1 s = 2 s = 3 . . . s = |S|



ETL1,1 ETL1,2 ETL1,3 . . . ETL1,|S| v = 1

ETL2,1 ETL2,2 ETL2,3 . . . ETL2,|S| v = 2

...
...

...
. . .

...
...

ETLΩDL,1
ETLΩDL,2

ETLΩDL,3
. . . ETLΩDL,|S| v = ΩDL

ET T1,1 ET T1,2 ET T1,3 . . . ET T1,|S| v = ΩDL + 1

ET T2,1 ET T2,2 ET T2,3 . . . ET T2,|S| v = ΩDL + 2

...
...

...
. . .

...
...

ET TΩDT ,1
ET TΩDT ,2

ET TΩDT ,3
. . . ET TΩDT ,|S| v = ΩDL + ΩDT

e1,1 e1,2 e1,3 . . . e1,|S| v = ΩDL + ΩDT + 1

e2,1 e2,2 e2,3 . . . e2,|S| v = ΩDL + ΩDT + 2

...
...

...
. . .

...
...

eT,1 eT,2 eT,3 . . . eT,|S| v = ΩDL + ΩDT + T

Ir1,1 Ir1,2 Ir1,3 . . . Ir1,|S| v = ΩDL + ΩDT + T + 1

Ir2,1 Ir2,2 Ir2,3 . . . Ir2,|S| v = ΩDL + ΩDT + T + 2

...
...

...
. . .

...
...

IrT,1 IrT,2 IrT,3 . . . IrT,|S| v = ΩDL + ΩDT + 2T

where ξv,s is the realization of random variable v in scenario s. According to the Monte Carlo

sampling procedure, the probability Pr(s) of each scenario is 1/|S|.

5.3 Two-Stage Stochastic Program

The repair and restoration problem can be divided into two stages. The first stage is to route

the repair crews, which is characterized by depots, repair crews, damaged components and paths

between the damaged components. The second stage is distribution system restoration using DGs

and reconfiguration. In practice, these two subproblems are interdependent. Therefore, we propose

a single MILP formulation that integrates the two problems for joint distribution system repair and
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restoration, with the objective of maximizing the picked-up loads. The utility solves the optimization

problem to obtain the best route for the repair crews. The crews are then dispatched to repair the

damaged components. For example, the crews may have to replace a pole or reconnect a wire. This

repair process is included in the model through the repair time. Meanwhile, the utility controls the

DGs and switches to restore power to the consumers. In this chapter, we modify the mathematical

model presented in Chapter 4 by adding uncertainty and converting the MILP model into a two-stage

stochastic MILP (SMIP). A brief explanation for the modified constraints is provided for clarity.

5.3.1 First Stage: Repair Crew Routing and Resource Constraints

The first-stage decision variables in the SMIP are used to compute the routes for each crew

while satisfying equipment requirement and capacity constraints. The first-stage constraints are

independent from the uncertain parameters. The constraints are listed in the following:

∑
∀m∈N

xφ0c ,m,c = 1,∀c (5.6)

∑
∀m∈N

xm,φ1c ,c = 1,∀c (5.7)

∑
∀n∈N\{m}

xm,n,c −
∑

∀n∈N\{m}

xn,m,c = 0,∀c,m ∈ N\
{
φ0
c , φ

1
c

}
(5.8)

∑
∀c∈CL

∑
∀m∈N\{n}

xm,n,c = 1, ∀n ∈ ΩDL (5.9)

∑
∀c∈CT

∑
∀m∈N\{n}

xm,n,c = 1,∀n ∈ ΩDT (5.10)

EDd,τ ≥
∑

∀c∈CL,φ0c=d

ECc,φ0c ,τ +
∑
∀c∈CL

ECc,d,τ ,∀d, τ (5.11)

∑
∀τ

CapRτ CEc,m,τ ≤ CapCc ,∀m, c ∈ CL (5.12)

∑
∀n∈N

xn,m,cRm,τ ≤ CEc,m,τ , ∀m, τ, c ∈ CL (5.13)

−M(1− xm,n,c) ≤ CEc,m,τ −Rm,τ − CEc,n,τ ≤M(1− xm,n,c),

∀m ∈ N\{φ1
c}, n ∈ N\

{
φ0
c ,m

}
, c ∈ CL, τ

(5.14)
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−M(1− xd,n,c) ≤ CEc,d,τ + ECc,d,τ − CEc,n,τ ≤M(1− xd,n,c),

∀d, n ∈ N\
{
φ0
c , φ

1
c , d
}
, c ∈ CL, τ

(5.15)

−M(1− xφ0c ,n,c) ≤ E
C
c,φ0c ,τ

− CEc,n,τ ≤M(1− xφ0c ,n,c), ∀n ∈ N\
{
φ0
c

}
, c ∈ CL, τ (5.16)

Constraint (5.6)–(5.7) define the starting and ending point for each crew. Constraint (5.8) is the

flow conservation constraint, where a crew arrives at a damaged component and then moves to the

next location after finishing the repairs. Constraints (5.9) and (5.10) ensure that each damaged

component is repaired by only one line crew and one tree crew, respectively. Constraint (5.11) limits

the number of resources that the crews obtain from depot d by the number of available resources in

the depot. Constraint (5.12) limits the number of resources by the crew’s capacity. The crews must

have enough resources to repair the damaged components, as enforced by (5.13). Constraint (5.14)

calculates the number of resources that crew c has when arriving at location n. Constraint (5.15)

models the resource pick up constraint, where a crew can go back to the depot to obtain additional

resources. Constraint (5.16) defines the initial resources that the crews have.

5.3.2 Second Stage: Distribution Network Operation

In the second stage, the distribution system is operated based on the realized scenarios. The

second-stage decision variables are used to operate the switches and DGs to maximize the served

loads. The variables in the second stage, indexed by s, are functions of the random variables ETm,c,s

(repair time), PDi,ϕ,t,s (demand), and Irt,s (solar irradiance). Notice that ETLm,s and ET Tm,s are

combined into ETm,c,s by including the crew index c. The second stage objective and constraints

are presented in this subsection.

5.3.2.1 Objective

min
∑
∀s

Pr(s)
∑
∀t

(∑
∀ϕ

∑
∀i

(1− yi,t,s)ρDi PDi,ϕ,t,s + ρSW
∑

k∈ΩSW

γk,t,s
)

(5.17)

The objective (5.17) of the second stage is to maximize the expected served loads and minimize

the switching operations over the time horizon. In the second stage, DGs and line switches are
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optimally operated in response to the realization of the random variables. Once a damaged line is

repaired and energized, it provides a path for the power flow.

5.3.2.2 Second-Stage Constraints

PLi,ϕ,t,s = yi,t,sP
D
i,ϕ,t,s + (yi,t,s − yi,max(t−λ,0),s)P

U
i,ϕ,t,s, ∀i, ϕ, t, s (5.18)

QLi,ϕ,t,s = yi,t,sQ
D
i,ϕ,t,s + (yi,t,s − yi,max(t−λ,0),s)Q

U
i,ϕ,t,s, ∀i, ϕ, t, s (5.19)

yi,t+1,s ≥ yi,t,s , ∀i, t, s (5.20)

0 ≤ PGi,ϕ,t,s ≤ P
Gmax
i , ∀i, ϕ, t, s (5.21)

0 ≤ QGi,ϕ,t,s ≤ Q
Gmax
i , ∀i, ϕ, t, s (5.22)

− uk,t,spk,ϕPKmax
k ≤ PKk,ϕ,t,s ≤ uk,t,spk,ϕP

Kmax
k , ∀k, ϕ, t, s (5.23)

− uk,t,spk,ϕQKmax
k ≤ QKk,ϕ,t,s ≤ uk,t,spk,ϕQ

Kmax
k , ∀k, ϕ, t, s (5.24)∑

∀k∈K(.,i)

PKk,ϕ,t,s + PGi,ϕ,t,s + PPVi,ϕ,t,s + P dchi,ϕ,t,s =
∑

∀k∈K(i,.)

PKk,ϕ,t,s + PLi,ϕ,t,s + P chi,ϕ,t,s,∀i, ϕ, t, s (5.25)

∑
∀k∈K(.,i)

QKk,ϕ,t,s +QGi,ϕ,t,s +QPVi,ϕ,t,s +QESi,ϕ,t,s + uCi,t,sQ
C
i,ϕ =

∑
∀k∈K(i,.)

QKk,ϕ,t,s +QLi,ϕ,t,s, ∀i, ϕ, t, s (5.26)

Uj,t,s −Ui,t,s + Z̄kS
∗
k,s + Z̄∗kSk,s ≤ (2− uk,t,s − pk)M,∀k ∈ ΩL\ΩV , t, s (5.27)

Uj,t,s −Ui,t,s + Z̄kS
∗
k,s + Z̄∗kSk,s ≥ −(2− uk,t,s − pk)M, ∀k ∈ ΩL\ΩV , t, s (5.28)

(0.9)2Ui,ϕ,t,s ≤ Uj,ϕ,t,s ≤ (1.1)2Ui,ϕ,t,s, ∀k ∈ ΩV , ϕ, t, s (5.29)

Xi,t,sUmin ≤ Ui,t,s ≤ Xi,t,sUmax , ∀i, t, s (5.30)

2uk,t,s ≥ Xi,t,s + Xj,t,s,∀k ∈ ΩDL, t, s (5.31)

uk,t,s = 1, ∀k 6∈ {ΩSW ∪ ΩDL}, t, s (5.32)

γk,t,s ≥ uk,t,s − uk,t−1,s, ∀k ∈ ΩSW , t, s (5.33)

γk,t,s ≥ uk,t−1,s − uk,t,s, ∀k ∈ ΩSW , t, s (5.34)
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∑
k∈ΩK(l)

uk,t,s ≤ |ΩK(l)| − 1,∀l, t, s (5.35)

PPVi,ϕ,t,s =
Iri,t,s

(1000W/m2)
P
PV
i ,∀i ∈ ΩPV \ΩG

PV , ϕ, t, s (5.36)

PPVi,ϕ,t,s = Xi,t,s
Iri,t,s

(1000W/m2)
P
PV
i ,∀i ∈ ΩG

PV , ϕ, t, s (5.37)

|QPVi,ϕ,t,s| ≤
√

(SPVi )2 − (P̂PVi,t,s)
2, ∀i ∈ ΩPV \ΩG

PV , ϕ, t, s (5.38)

|QPVi,ϕ,t,s| ≤ Xi,t,s
√

(SPVi )2 − (P̂PVi,t,s)
2, ∀i ∈ ΩG

PV , ϕ, t, s (5.39)

where P̂PVi,t,s =
Iri,t,s

(1000W/m2)
P
PV
i

vSi,ϕ,t,s +
∑

k∈K(.,i)

vfk,ϕ,t,s = Xi,t,s +
∑

k∈K(i,.)

vfk,ϕ,t,s,∀i, ϕ, t, s (5.40)

∑
∀ϕ

∑
∀t
vSi,ϕ,t,s = 0,∀i ∈ ΩB\{ΩC

PV ∪ ΩG ∪ ΩSub}, s (5.41)

− (uk,t,s pk,ϕ)M ≤ vfk,ϕ,t,s ≤ (uk,t,s pk,ϕ)M,∀k ∈ ΩK , ϕ, t, s (5.42)

Xi,t,s ≥ yi,t,s,∀i ∈ ΩB\{ΩG ∪ ΩC
PV ∪ ΩH

PV }, t, s (5.43)

0 ≤ P chi,ϕ,t,s ≤ uESi,t,sP
ch
i , ∀i ∈ ΩES , ϕ, t, s (5.44)

0 ≤ P dchi,ϕ,t,s ≤ (1− uESi,t,s)P
dch
i , ∀i ∈ ΩES , ϕ, t, s (5.45)

ESi,t,s = ESi,t−1,s + ∆t(ηc
∑
∀ϕ

P chi,ϕ,t,s −
∑
∀ϕ P

dch
i,ϕ,t,s

ηd
),∀i ∈ ΩES , t, s (5.46)

ESi ≤ ESi,t,s ≤ E
S
i , ∀i ∈ ΩES , t, s (5.47)

− uESi,t,sSESi ≤ QESi,ϕ,t,s ≤ uESi,t,sSESi ,∀i ∈ ΩES , ϕ, t, s (5.48)

|(P chi,ϕ,t,s + P dchi,ϕ,t,s) +QESi,ϕ,t,s| ≤
√

2SESi ,∀i ∈ ΩES , ϕ, t, s (5.49)

|(P chi,ϕ,t,s + P dchi,ϕ,t,s)−QESi,ϕ,t,s| ≤
√

2SESi ,∀i ∈ ΩES , ϕ, t, s (5.50)

αm,c,s + ETm,c,s + trm,n − (1− xm,n,c)M ≤ αn,c,s∀m ∈ N\{φ1
c}, n ∈ N\

{
φ0
c ,m

}
, c, s (5.51)∑

c∈CL

αm,c,s ≥
∑
c∈CT

αm,c,s + ETm,c,s
∑
∀n∈N

xm,n,c,∀m ∈ ΩDT , s (5.52)

∑
∀t
fm,t,s = 1 , ∀m ∈ ΩDL, s (5.53)
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∑
∀t
tfm,t,s ≥

∑
∀c

(αm,c,s + ETm,c,s
∑
∀n∈N

xm,n,c), ∀m ∈ ΩDL, s (5.54)

0 ≤ αm,c,s ≤M
∑
n∈N

xn,m,c, ∀m ∈ N\
{
φ0
c , φ

1
c

}
, c, s (5.55)

um,t,s =
t∑
t̄=1

fm,t̄,s , ∀m ∈ ΩDL, t, s (5.56)

Constraints (5.18–(5.19) model the CLPU effects on the loads. Constraint (5.20) prohibits load

shedding once the load is served. Constraints (5.21)–(5.24) define the active and reactive power

limits of the DGs and lines. Constraints (5.25)–(5.26) are the 3-phase active and reactive power

node balance constraints. Kirchhoff’s voltage law is represented in (5.27)–(5.28) [105]. In this

chapter, we assume that the tap setting is continuous [106] for voltage regulators, then constraint

(5.29) forces the voltage on the secondary side of the voltage regulator to be within ±10% of the

primary side. Constraint (5.30) ensures that the voltage is within a specified limit if energized.

Constraint (5.31) sets the values of Xi and Xj to be 0 if the line is damaged, therefore, the voltages

on the buses between damaged lines are forced to be 0 using constraint (5.30). If the voltages on two

connected buses are zero, then the power flow is forced to be zero through constraints (5.27) and

(5.28), therefore, the model will isolate the faults in order to serve the loads. Constraint (5.32) sets

uk = 1 for lines that are not damaged or not switchable. Constraint (5.33)–(5.34) are used in order

to limit the number of switching operations, where γk,t is included in the objective to minimize the

number of switching operation. Constraint (5.35) is the radiality constraint [108]. The active and

reactive power of different types of PV systems are defined in (5.36)–(5.39). The connectivity of

the PV systems is modeled in (5.40)–(5.42) using the virtual framework presented in Chapter 4. A

load connected to a de-energized bus must be shed (5.43), unless the bus has a local power source.

Constraints on BESSs are modeled in (5.44)–(5.50). The arrival time of the crews at each damaged

component is calculated in (5.51). The coordination between tree and line crews is represented in

(5.52). Constraints (5.53)–(5.56) are used to connect the crew scheduling constraints with power

operation constraints.
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5.3.3 Extensive Form

The complete two-stage stochastic program for solving stochastic DSRRP (S-DSRRP) is presented

in this section. The extensive form (EF) of the two-stage S-DSRRP is formulated as follows:

min
∑
∀s

Pr(s)
∑
∀t

(∑
∀ϕ

∑
∀i

(1− yi,t,s)ρDi PDi,ϕ,t,s + ρSW
∑

k∈ΩSW

γk,t,s
)

subject to first-stage constraints (5.6)–(5.16)

subject to second-stage constraints (5.18)–(5.56)

{f, x, u, y,X , γ} ∈ {0, 1}, {CE,EC} ≥ 0

(5.57)

5.4 Solution Algorithm

The routing problem is an NP-hard combinatorial optimization problem with exponential

computation time. Adding uncertainty and combining distribution system operation constraints

with the routing problem further increase the complexity. To solve S-DSRRP, we adapt the

assignment-based approach presented in Chapter 4, and utilize the Progressive Hedging algorithm

for solving the stochastic program. Our approach decomposes the S-DSRRP into two stochastic

subproblems. The goal of the first subproblem is to assign the crews to the damaged components,

where we consider the uncertainty of the repair time. In the second subproblem, the repair crews

are dispatched based on the assignment results obtained from the first subproblem. The second

subproblem is solved using parallel PH. In this section, we decompose S-DSRRP and present the

procedure for solving the problem. The decomposed S-DSRRP will be referred to as DS-DSRRP.

5.4.1 Subproblem I

The first subproblem is similar to (4.74)–(4.88), where the crews are assigned to the damaged

components based on the capacity, distances, and expected working hours. However, in this section

we modify the MILP problem in (4.74)–(4.88) to SMIP, as the repair time is a random variable.

The subproblem is formulated as follows:

min
∑
∀s

Pr(s)
(
LLs + LTs

)
+
∑
∀c

∑
∀d
Pc,d + t̄r (5.58)
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s.t. (4.77)− (4.88)

LLs ≥
∑
∀m

ALm,cETm,c,s,∀c ∈ CL, s (5.59)

LTs ≥
∑
∀m

ATm,cETm,c,s,∀c ∈ CT , s (5.60)

The first-stage decision variables are the assignment variables ALm,c and ATm,c. Therefore, the

crews are assigned to the damaged components in the first stage. After the realization of the

scenario, the working hours and the time of the last repairs are determined in the second stage.

After solving this subproblem, we can calculate the set of components that each crew repairs using

the following equations:

ΩDL(c) = {m|∀m ∈ ΩDL, A
L
m,c = 1},∀c ∈ CL (5.61)

ΩDT (c) = {m|∀m ∈ ΩDT , A
T
m,c = 1}, ∀c ∈ CT (5.62)

N(c) = ΩDL(c) ∪ ΩP ,∀c ∈ CL (5.63)

N(c) = ΩDT (c) ∪ ΩP ,∀c ∈ CT (5.64)

where ΩDL(c) and ΩDL(c) are the set of damaged components for each line and tree crew, respectively.

N(c) combines the set of depots to the set of damage components.

5.4.2 Subproblem II

The second subproblem is formulated similarly to (5.17)-(5.56). However, the crews are only

dispatched to the damaged components that they are assigned to repair from Subproblem I. The

second subproblem is then formulated as follows:

min (5.17)

∑
∀m∈N(c)

xφ0c ,m,c = 1, ∀c (5.65)

∑
∀m∈N(c)

xm,φ1c ,c = 1, ∀c (5.66)
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∑
∀n∈N(c)\{m}

xm,n,c −
∑

∀n∈N(c)\{m}

xn,m,c = 0,∀c,m ∈ N(c)\
{
φ0
c , φ

1
c

}
(5.67)

∑
∀m∈N(c)\{n}

xm,n,c = 1, ∀c ∈ CL, n ∈ ΩDL(c) (5.68)

∑
∀m∈N(c)\{n}

xm,n,c = 1,∀c ∈ CT , n ∈ ΩDT (c) (5.69)

∑
∀n∈N(c)

xn,m,cRm,τ ≤ CEc,m,τ , ∀c ∈ CL,m ∈ N(c), τ (5.70)

−M(1− xm,n,c) ≤ CEc,m,τ −Rm,τ − CEc,n,τ ≤M(1− xm,n,c),

∀m ∈ N(c)\{φ1
c}, n ∈ N(c)\

{
φ0
c ,m

}
, c ∈ CL, τ

(5.71)

−M(1− xd,n,c) ≤ CEc,d,τ + ECc,d,τ − CEc,n,τ ≤M(1− xd,n,c),

∀d, n ∈ N(c)\
{
φ0
c , φ

1
c , d
}
, c ∈ CL, τ

(5.72)

−M(1− xφ0c ,n,c) ≤ E
C
c,φ0c ,τ

− CEc,n,τ ≤M(1− xφ0c ,n,c), ∀n ∈ N(c)\
{
φ0
c

}
, c ∈ CL, τ (5.73)

αm,c,s + ETm,c,s + trm,n− (1− xm,n,c)M ≤

αn,c,s, ∀m ∈ N(c)\{φ1
c}, n ∈ N(c)\

{
φ0
c ,m

}
, c, s

(5.74)

∑
c∈CL

∑
n∈ΩDL(c)
n==m

αm,c,s ≥
∑
c∈CT

∑
n∈ΩDT (c)
n==m

αm,c,s + ETm,c,s
∑
∀n∈N

xm,n,c, ∀m ∈ ΩDT , s (5.75)

∑
∀t
tfm,t,s ≥ αm,c,s + ETm,c,s, ∀c ∈ CL,m ∈ ΩDL(c), s (5.76)

s.t. (5.11)–(5.12), (5.18)–(5.50), (5.53), (5.56)

Constraints (5.65)–(5.75) are similar to the constraints presented in Chapter 4, however, they are

modified by replacing N , ΩDL, and ΩDT with N(c) , ΩDL(c), and ΩDT (c). We simplify constraint

(5.54) by removing the xm,n,c term, as shown in (5.76). The rest of the constraints and the objective

are not changed.

Algorithm 3 summarizes the procedure for solving S-DSRRP, starting from scenario generation

to decomposition. Subproblem I is solved using the extensive form as it is not a difficult problem.

However, Subproblem is solved using PH due to its complexity.
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Algorithm 3 Scenario generation and S-DSRRP

1: for s ∈ 1 to |S| do

2: Generate the repair time for each damaged component using lognormal distribution (µ =

1.0570, σ = 1.0555)

3: Generate the tree-clearing time using a truncated normal distribution (mean = 1 hour, max

= 3 hours, min = 30 minutes)

4: Generate the kW and kVAr demand values for each load using (5.2)

5: Generate the solar irradiance using (5.5)

6: end for

7: Solve Subproblem I using the extensive form

8: ΩDL(c) = {m|∀m ∈ ΩDL, A
L
m,c = 1},∀c ∈ CL

9: ΩDT (c) = {m|∀m ∈ ΩDT , A
T
m,c = 1}, ∀c ∈ CT

10: N(c) = ΩDL(c) ∪ ΩP ,∀c ∈ CL
11: N(c) = ΩDT (c) ∪ ΩP ,∀c ∈ CT
12: Solve Subproblem II using PH

5.5 Simulation and Results

The modified IEEE 123-bus distribution feeder, presented in Chapter 4, is used as a test case for

the stochastic repair and restoration problem. Detailed information on the network can be found in

[93]. The stochastic models and algorithms are implemented using the PySP package in Pyomo [89].

IBM’s CPLEX 12.6 mixed-integer solver is used to solve all subproblems. The experiments were

performed on Iowa State University’s Condo cluster, whose individual blades consist of two 2.6 GHz

8-Core Intel E5-2640 v3 processors and 128 GB of RAM. The scenario subproblems are solved in

parallel by using the Python Remote Objects library.

The same test case in Fig. 4.12, with 6 line crews, 2 tree crews, 3 depots, and 14 damaged

lines is used in this section. The Monte Carlo sampling technique is used to generate 1000 random

scenarios with equal probability, and the SCENRED2 toolkit in GAMS is used to reduce the number

of scenarios to 30. For the repair time, a lognormal distribution is used with parameters µ = 1.0570

and σ = 1.0555 [119], and unrealistic values (e.g., 0.01 hours) are truncated. On the other hand,

the load forecast error is generated using a truncated normal distribution with limits ±15% [121].

The tree-clearing time is generated using a truncated normal distribution and the solar irradiance

is generated according to (5.5). Samples of the 30 generated scenarios are shown in Table 5.2 for
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the repair time. Three methods are used to solve the test case: 1) DS-DSRRP with subproblem II

solved using EF; 2) DS-DSRRP with PH; 3) Reoptimization algorithm. Since the Reoptimization

algorithm is deterministic, we reduce the number of scenarios to a single scenario using GAMS for

this method.

Table 5.2 Samples of the repair times (in hours) for the 30 generated scenarios using the

lognormal distribution

Damage Scenario 1 Scenario 2 Scenario 3 . . . Scenario 30

Line 7–8 6 6 2 . . . 4

Line 27–33 3 4 2 . . . 3

Line 18–19 5 2 2 . . . 2

Line 163–18 2 4 2 . . . 6

Line 15–17 5 6 6 . . . 4

Line 38–39 1 3 5 . . . 6

Line 58–59 6 1 3 . . . 1

Line 54–57 2 4 4 . . . 2

Line 67–72 2 1 6 . . . 1

Line 76–86 4 1 4 . . . 5

Line 91–93 4 1 5 . . . 1

Line 93–95 1 2 2 . . . 5

Line 105–106 1 2 4 . . . 5

Line 113–114 5 1 2 . . . 3

The routing solutions obtained using DS-DSRRP with PH and the Reoptimization algorithm

are shown in Fig. 5.4 and Fig. 5.5, respectively. Solving the complete problem S-DSRRP without

decomposition did not result in a solution after 12 hours. To show the benefits of including

uncertainty and compare the deterministic method with the stochastic method, we set the first-stage

variables as fixed parameters and solve the stochastic problem F(x, ξ) = min{5.17, s.t. 5.18− 5.56}.

Therefore, if xR is the routing solution in Fig. 5.5, then the expected value of the deterministic

solution is F(xR, ξ). A comparison between the three methods (DS-DSRRP (EF),DS-DSRRP (PH),

Reoptimization) is shown in Table 5.3. The wait-and-see (WS) is found to provide a lower bound to

the objective value to give us an indication on the quality of the solutions obtained using different

methods.
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Figure 5.4 Routing solution obtained by solving DS-DSRRP using PH.

Table 5.3 Stochastic DSRRP simulation results on the IEEE 123-bus system with 14

damaged lines

Objective Value F(x,ξ) Comp. Time (Objective Value - WS)/WS

DS-DSRRP (EF)* $251,246.43 12 h 5.92%

DS-DSRRP (PH) $250,306.7 858.08 s 5.53%

Reoptimization $258,643.3 786.2 s 9.04%

*The solver did not converge to the optimal solution after 12 hours (imposed time limit).



www.manaraa.com

103

1

2

3

4

5 6

7 8

149
12

9

1411
10

13

34

15

16 17

18

1920

21
22

23
24

25
26

2733

31
32

135
35

37
38  39

40 41

42 43

44 45 46

4748

49

50

51

151

152 52 53

54

55 56

575859 60

61

62646566

160

67

97

197

101

105
106

107

108109

110

112

114

300

111

113

102 103 104

98 99 100 450

68 69 70 71

72
73 74 75

76
77 78 79

80

81

83

82 84

85

94

9395

96 92

91 89

90

87

88

86

2829

30

250

DG DepotOpen Switch

CB

161

162
163

164

165

166

Closed Switch

167

36

168
175

176

174
170

169

Voltage Regulator

Depot 1

Depot 3

Single Phase Two Phase Three Phase Damaged Component

Fallen Tree

172

173

63

On-grid PV Hybrid system Grid-forming PV+BESS

171

Depot 2

1

3

2

4

56

7

89

10

Figure 5.5 Routing solution obtained by using the Reoptimization algorithm and the

expected values of the repair times.

For DS-DSRRP with EF, the solution did not converge to the optimal one after 12 hours,

however, a feasible is obtained, which is 5.92% larger than the WS solution. EF requires a long

computation due to the complexity of subproblem II in DS-DSRRP. The best solution is obtained

using DS-DSRRP with PH, where the objective value is around $8,000 less than F(xR, ξ) and the

computation time is less than 900 seconds. By using PH, we obtained a high quality solution in

a short time. Next, we compare the routing solutions on 5 random realizations. Let xS be the

routing solution obtained by solving DS-DSRRP with PH (Fig. 5.4). We set xS to be constant and

generate a random scenario to simulate an actual event. The objective value and the quality of the

routing solution can then be found by solving F(xS , ξ). The results for 5 cases are shown in Table

5.4. In addition to DS-DSRRP (PH) and Reoptimization, we solve the test cases using Dynamic
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Reoptimization, where the solution is updated as new information is obtained. The optimal solution

(last column in Table 5.4) is obtained by solving the deterministic problem for each case, with

perfect information on the random variables. In the first test case, Reoptimization outperformed

DS-DSRRP. In all other cases, the stochastic method achieved higher quality solutions, which is

highlighted by the optimality gaps. This further signifies the importance of uncertainty in our

decision-making process. However, the dynamic approach outperformed both DS-DSRRP and static

Reoptimization. Therefore, we can conclude that a dynamic method is the best approach for this

problem in terms of quality and speed. The downside of the dynamic approach is that it requires

constant communication with all crews, which may not be available after extreme events.

Table 5.4 The objective value for the IEEE 123-bus system (14 damaged lines) with

constant routing solutions and different scenario realizations

Case
DS-DSRRP (PH) Static-Reoptimization Dynamic-Reoptimization

OptimalF(xS , ξcase) % Gap F(xR, ξcase) % Gap F(xD, ξcase) % Gap

1 $256,104.7 10.84% $241,661.9 4.59% $232,728.8 0.72% $231,065.4

2 $248,671.7 6.98% $299,586.4 28.88% $245,558.6 5.64% $232,447.7

3 $269,505.5 6.85% $291,036.7 15.38% $259,189.3 2.76% $252,235.3

4 $251,256.7 13.27% $268,590.5 21.08% $236,415.2 6.58% $221,828.2

5 $240,549.3 15.22% $246,431.5 18.04% $221,790.7 6.24% $208,772.2

5.6 Summary

In this chapter, we proposed a two-stage stochastic approach for the repair and restoration

of distribution networks. The scenarios are generated using Monte Carlo sampling, considering

the uncertainty of the repair time, load, and solar irradiance. We developed a decomposition

approach to solve the stochastic problem. The approach starts by solving an assignment problem,

and then operates the system and routes the crews in the second subproblem. Both subproblems

are formulated as two-stage stochastic programs. Parallel Progressive Hedging is employed in the

algorithm for the second subproblem where the subproblem for each scenario is solved separately.

The results demonstrate the effectiveness of the proposed approach in balancing computational
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burden and solution quality. In addition, we showed the importance of including uncertainty in the

decision-making process. Using a stochastic or dynamic method for handling the uncertainties leads

to better routing solutions.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusion and Research Contribution

Major weather events can cause significant damage to the infrastructure of distribution networks.

Utilities must efficiently plan the recovery operation to repair the assets in a quick and effective

manner. Utilities schedule the repairs using predefined restoration priority lists based on previous

experiences. Some utilities use simple greedy algorithms to determine the restoration sequence [12],

and others rely on the experience of the operators. After an extreme event, a sudden influx of crews

can overwhelm operators and storm planners when they route the crews. Efficient restoration of the

system is only possible if the crews are utilized properly. This involves coordinating repair crews with

the recovery operation of distribution networks. Crews must be dispatched to repair the most critical

lines, and power should be rerouted by reconfiguring the network to achieve a quick restoration

process. In addition, the effectiveness of the recovery response depends on the preparation processes

that are taken before extreme events hit. Pre-staging crews, equipment and other resources safely

before a severe event allows for a proactive response and efficient resource management. This

dissertation uses mathematical programming for disaster preparation in distribution systems and for

co-optimizing repair scheduling and the recovery operation of distribution networks. An optimization

process can help the operator to greatly decrease the restoration time. Effective response to weather

events can lead to faster restoration time, as demonstrated in Fig. 4.16. Simulation results in Table

4.7 showed the importance of coordinating DGs and switches in the restoration process. The main

contributions of this dissertation are listed as follows:

� A new two-stage SMIP model is developed and used to select depots and allocate crews

and equipment. The model considers different types of crews (line and tree crews) and

equipment (poles, transformers, and conductor). Mathematical equations for modeling the

interdependencies of the depots, crews, equipment, and damaged components are formulated,
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in addition to symmetry-breaking constraints to improve the performance of the model. Also,

we provide a procedure for estimating the number and types of required equipment after

extreme weather events.

� A novel MILP model for combining the repair crew routing and distribution network operation

problems is developed. To the best of our knowledge, the proposed model is the first formulation

that combines the two problems in the literature. The designed model captures the nature

of the repair problem by modeling the coordination of line and tree crews, resource logistics,

and isolation of the damaged components. Isolation of the damaged components is necessary

because crews cannot repair live wires. The developed model can be applied on balanced and

unbalanced distribution networks. This model can assist utilities in scheduling the repairs and

restore normal operations after natural disasters.

� A mathematical formulation is developed for fault isolation and service restoration. Most of

the studies on distribution system restoration assume that every line is equipped with switches

to isolate the faults, which is not the case in practice. The developed formulation allows the

network to isolate the faults and divides the network into microgrids. The proposed model can

be incorporated into various distribution system studies, such as those relating to distribution

system planning, networked microgrids, and distribution system repair and restoration.

� A framework for modeling different types of PV systems and their connectivity is developed.

The idea of the proposed approach is to use virtual sources, loads, and flow to identify energized

buses in distribution systems.

� A new hybrid algorithm that combines mathematical programming and the neighborhood

search method is designed to solve DSRRP. The proposed tri-stage method starts by solving

an assignment problem, where the crews are assigned to the damaged components, and in

the second stage, crews are dispatched to the assigned components from the first stage. An

adaptive neighborhood search method is then designed to iteratively improve the solution. The

algorithm updates the crew schedule as more information is obtained regarding the network
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and damaged components. The proposed algorithm achieved the best repair schedule when

compared to solutions obtained using other methods, including commercial solvers.

� A two-stage stochastic framework is developed for optimizing service restoration in distribution

networks. The designed method shows how stochastic programs can be efficiently solved using

decomposition methods and Monte Carlo sampling. The stochastic DSRRP is simplified by

first solving a stochastic assignment problem, and then solving the stochastic co-optimization

problem. The results showed the importance of including uncertainty, as both stochastic and

dynamic methods outperform the deterministic method.

6.2 Future Research

6.2.1 Coordination Between Utilities for Disaster Preparation

The preparation study in Chapter 3 presented a preparation plan for a single utility. However,

in some cases where the natural disaster hits multiple regions, preparation should be coordinated

between all utilities in the region. In addition, the Federal Emergency Management Agency (FEMA)

will provide support for those utilities. Thus, it is necessary to coordinate the available resources

between all involved parties. One possible approach is to modify the model presented in Chapter 3

and use it in a multi-agent based approach.

6.2.2 Mobile Generators

Advanced weather forecasting methodologies and fragility models provide utilities the ability to

predict the severity of the damage to the system and the affected areas. If the available flexible

resources such as mobile generators and mobile battery energy storage systems are coordinated

strategically with distributed solar energy and other system components, we can reduce the disaster

outcome and decrease the restoration time. Efficient utilization of mobile generators is hindered

after extreme events due to difficult road conditions. Therefore, it is imperative that power
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companies preposition the mobile sources. In current research, we are developing a two-stage SMIP

to preposition the mobile generators before extreme events.

6.2.3 Machine Learning for Repair Time Estimation

In order to devise a plan for power restoration, it is necessary for utilities to estimate the repair

time for the damaged components. The dispatchers can then direct the repair crews more efficiently

and release the estimated restoration time to the public. Few studies have tackled the prediction of

repair and restoration times. Instead, studies have focused on predicting the locations, size, and

number of outages.

In previous work [123], we used Deep Neural Network to predict the repair and restoration

times of outages. We presented and analyzed 6 years of distribution network outage data that were

obtained from one utility in the United States. The data showed that there existed a clear correlation

between the repair/restoration time and the number of customers interrupted. In addition, both

repair and restoration times tended to be higher after extreme weather events. The repair time

prediction model achieved satisfactory performance, where the mean error was only 18 minutes.

The mean error for the restoration time predictive model was 2 hours. However, the work in [123] is

only for one utility, and may not be replicated on other datasets. Therefore, further investigation is

needed to determine whether we can accurately predict the repair time.

6.2.4 Sequential Operation of Switching Devices

In Section 4.2.2.4, a model was developed for the optimal topology configuration of distribution

systems after outages. However, the purpose of the model was to find the final configuration of

the switches and not the sequence of switching actions that must be taken. Due to the different

characteristics of switching devices, the switches must be operated in a specific sequence to obtain

the optimal configuration. For example, a sectionalizing switch cannot interrupt currents, therefore,

circuit breakers or reclosers have to cut off the power before operating the sectionalizer. In future

work, we will develop a MILP model for finding the optimal sequence of switching operations.
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6.2.5 Rebuilding the Distribution System

In extreme cases, natural disasters may completely destroy parts of the grid. The problem for the

utilities would then become a rebuilding one, rather than repair and restoration. Rebuilding after

major events is challenging, utilities must organize and manage all their resources while ensuring

that the electricity is restored as fast as possible. However, the rebuilding process presents an

opportunity for the utility to rebuild a smarter and more resilient network, instead of reconstructing

the same network. Destroyed equipment can be rebuilt with upgraded assets, and new controllable

switches can be installed. In addition, the new grid should be built with smart communication

technologies to facilitate the use of microgrids and renewable generators.

There are several research directions that can be explored on this topic. In terms of logistics,

crews and their accommodations, equipment, and work schedules must all be coordinated and

managed. For the distribution systems, utilities must decide where and what types of technologies

to install. The objective of the rebuilding process is to construct a more resilient system within the

budget.

6.3 Publications

Journal Paper

1. A. Arif, Z. Wang, C. Chen, and B. Chen “A stochastic multi-commodity logistic model

for disaster preparation in distribution systems,” IEEE Trans. Smart Grid, accepted for

publication.

2. A. Arif, Z. Wang, J. Wang, and C. Chen, “Repair and resource scheduling in unbalanced

distribution systems using neighborhood search,” IEEE Trans. Smart Grid, accepted for

publication.

3. A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan and C. Chen, “Optimizing service restoration

in distribution systems with uncertain repair time and demand,” IEEE Trans. Power Syst.,

vol. 33, no. 6, pp. 6828–6838, Jul. 2018.
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Conference Paper

1. S. Ma, N. Carrington, A. Arif, Z. Wang,“Resilience assessment of self-healing distribution
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